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Thermal history and gape of individual Mytilus californianus
correlate with oxidative damage and thermoprotective osmolytes
Lani U. Gleason1,‡,§, Luke P. Miller2, Jacob R. Winnikoff3,*, George N. Somero3, Paul H. Yancey4, Dylan Bratz4

and W. Wesley Dowd1,5

ABSTRACT
The ability of animals to cope with environmental stress depends – in
part – on past experience, yet knowledge of the factors influencing an
individual’s physiology in nature remains underdeveloped. We used an
individual monitoring system to record body temperature and valve
gaping behavior of rocky intertidal zonemussels (Mytilus californianus).
Thirty individuals were selected from two mussel beds (wave-exposed
andwave-protected) that differ in thermal regime. Instrumentedmussels
were deployed at two intertidal heights (near the lower and upper edges
of the mussel zone) and in a continuously submerged tidepool.
Following a 23-day monitoring period, measures of oxidative damage
to DNA and lipids, antioxidant capacities (catalase activity and peroxyl
radical scavenging) and tissue contents of organic osmolytes were
obtained from gill tissue of each individual. Univariate and multivariate
analyses indicated that inter-individual variation in cumulative thermal
stress is a predominant driver of physiological variation. Thermal history
over the outplant period was positively correlated with oxidative DNA
damage. Thermal history was also positively correlated with tissue
contents of taurine, a thermoprotectant osmolyte, andwith activity of the
antioxidant enzyme catalase. Origin site differences, possibly indicative
of developmental plasticity, were only significant for catalase activity.
Gaping behavior was positively correlated with tissue contents of two
osmolytes. Overall, these results are some of the first to clearly
demonstrate relationships between inter-individual variation in recent
experience in the field and inter-individual physiological variation, in this
case within mussel beds. Such micro-scale, environmentally mediated
physiological differences should be considered in attempts to forecast
biological responses to a changing environment.
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INTRODUCTION
Across broad spatial and temporal scales, adaptive variation in
organismal defenses against (and susceptibility to) environmental

stress generally correlates with mean environmental conditions
(Vernberg, 1962; Somero, 2005; Somero et al., 2017). At the other
extreme, micro-scale environmental variation, for instance among
individuals within a population, potentially contributes to larger-scale
patterns of physiology, ecology and evolution (Bolnick et al., 2011;
Pruitt and Ferrari, 2011; Pelletier and Garant, 2012; Farine et al.,
2015; Dowd et al., 2015; Jimenez et al., 2015; Lathlean et al., 2016).
Each individual performs based on its unique environmental
experience, yet knowledge of the effects of micro-scale spatial and
temporal environmental variation on individual animals’ physiology
remains sparse (but see Helmuth and Hofmann, 2001; McGaughran
et al., 2010). Such knowledge may be pivotal to forecasting the
biological effects of global change, as it will help clarify the roles of
adult physiological acclimatization, developmental physiological
plasticity and physiological adaptation in coping with environmental
changes.

Temperature variation, in particular, affects nearly all aspects of
ectotherm physiology, from macromolecular structure and function
to reproductive performance and survival. Within species,
correlations between mean habitat temperature and thermal stress
tolerance have been documented between populations, but few
studies have overcome the logistical constraints that hamper
attempts to study individual thermal physiology in the field (see,
for example, Miller et al., 2015).

Temperature variation plays an especially prominent role in the
rocky intertidal zone, the dynamic interface between marine and
terrestrial environments. In these habitats, temperature varies across
latitudinal gradients, vertical tidal heights and also within sites across
micro-scales on the order of centimeters (Bingham et al., 2011;
Denny et al., 2011). In fact, variation in body temperature among
individual Mytilus californianus mussels within a single bed can
exceed large-scale latitudinal differences (Helmuth et al., 2006;
Denny et al., 2011). This persistent micro-scale variation contributes
to among-individual physiological variation (e.g. in antioxidant
capacities), particularly when the environment varies around a
stressful mean (Jimenez et al., 2015). This effect presumably acts
via physiological plasticity as each individual attempts to ‘match’ its
physiology to its unique micro-environment. However, the
relationship between an individual’s current physiological status
and its past environmental experience remains elusive for most
organisms.

We take advantage of novel individual monitoring technology,
the sessile nature of many rocky intertidal zone invertebrates and the
high degree of spatial thermal variation in this habitat to assess
the physiological responses of individual sea mussels (Mytilus
californianus Conrad 1837) to micro-scale environmental variation.
We combine monitoring of body temperature and valve gaping
behavior in the field with several biochemical measures of thermal
defenses and macromolecular damage. Following collection from
wave-exposed (cool) and wave-protected (warm) origin habitats,Received 19 August 2017; Accepted 24 September 2017
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individualswere outplanted to three different intertidal sites (tidepool,
low and high), and body temperature and valve gaping behavior were
continuously recorded for 23 days. Oxidative damage, antioxidant
capacities and tissue contents of organic osmolytes – some of which
are known thermoprotectants and/or antioxidants – were measured
to characterize individual physiological profiles. We hypothesized
(1) that higher body temperatures would correspond with increased
oxidative damage, and (2) that this increased damage would be
counteracted physiologically via increased antioxidant capacities and
modulation of organic osmolytes. Overall, our findings do implicate
recent thermal history as a predominant driver of an individual
mussel’s current physiological status.

MATERIALS AND METHODS
Monitoring body temperature andgaping behavior in the field
MusselTracker individual monitoring system
For a complete description of the MusselTracker system, see Miller
and Dowd (2017). Briefly, the system consisted of a custom-built
circuit board, real-time clock, micro-SD memory card and ports to
attach sensor packages for each individual mussel. These sensors
included a calibrated thermocouple that was inserted through a small
hole in the shell of each individual mussel to record its mantle cavity
temperature (i.e. body temperature, resolution=0.25°C) and a Hall
effect magnetic sensor mounted near the apex of the shell that was
used to monitor valve gaping behavior (Wilson et al., 2005; Dowd
and Somero, 2013). The selected placement of the thermocouple
ensured that no tissue other than mantle or gonad was compromised.
Data were collected from each individual at 1 Hz. We do not believe
the MusselTracker system caused additional stress to the monitored
individuals, because (1) the attached sensors are similar to the
abundant epifauna covering M. californianus shells, such as
barnacles and limpets (Paine, 1976), (2) gaping behavior and
byssal thread formation of instrumented individuals followed
expected patterns and (3) levels of oxidative DNA damage and
catalase activity were comparable to those of uninstrumented mussels
collected directly from the field at a similar tidal height (Dowd et al.,
2013; L.U.G. and W.W.D., unpublished data).

Animal collection and deployment sites
Adult mussels (n=30, mean valve length 66.8±3.3 mm, range 60.8–
72.8 mm) were collected from a wave-splashed ‘exposed’ and a
wave-sheltered ‘protected’ site, situated 24 m apart, within a single
population at Hopkins Marine Station (HMS), Pacific Grove,
California (36.6203°N, 121.9042°W). Although seawater

temperatures at the two sites are the same (2015 range 9.4°C–
21.0°C; HMS Marine Life Observatory, http://mlo.stanford.edu/sst.
htm), individuals at the exposed site experience cooler body
temperatures due to more frequent wave-splash during low tide
periods compared with the protected site (Denny et al., 2011). The
abiotic conditions and physiological profiles of mussels at these two
sites have been extensively characterized (Denny et al., 2011; Dowd
et al., 2013; Jimenez et al., 2015). Mussels from the two origin sites
were allocated among three outplant sites (Table 1). Individuals were
held under common garden conditions in the laboratory for 7 days
after attachment of the MusselTracker sensors. During this time they
formed byssal thread attachments to the acrylic plates on which the
systems were mounted. Non-instrumented live mussels (40–70 mm
in size) were packed between the focal animals to mimic natural,
dense mussel beds. MusselTracker plates were bolted to the rock
substrate at each of three locations (high intertidal, low intertidal and a
continuously submerged tidepool), which have distinct thermal and
tidal profiles (Table 1). Upon deployment, each plate was covered
with a loose-fitting plastic mesh (5 mm openings) for 2 days to
prevent immediate dislodgement of animals by wave action.

Following 23 days in the field (15 July–6 August 2015),
individuals from all three outplant sites were collected during low
tide. Immediately prior to collection, gape recordings indicated
that individuals at all sites were closed and, therefore, not feeding.
Gill tissue was dissected from each individual and immediately
frozen in liquid nitrogen. Samples were stored at −80°C until
analysis. The mussel gill constitutes a significant fraction of total
tissue mass (allowing subsampling for multiple assays) and has
been the subject of numerous physiological studies (e.g.
Lockwood et al., 2010; Tomanek and Zuzow, 2010; Jimenez
et al., 2015; Jimenez et al., 2016). It is the principal site of gas
exchange (and, thus, is a highly aerobic tissue that directly
experiences ambient fluctuations in oxygen saturation), and it
serves as the suspension-feeding apparatus. Therefore, we expect
biochemical measures in the gill to reflect organismal
consequences of environmental variation.

MusselTracker data processing
The data from each MusselTracker plate were downloaded from the
micro-SD cards and concatenated into continuous time series. Those
series were manually edited to remove periods when the plates were
being maintained, when a sensor had failed, or following instances of
mortality. Following this quality control, the MusselTracker data set
included nearly continuous records of both body temperature and

Table 1. Tidal height and body temperature summaries for the tidepool, low intertidal and high intertidal outplant sites

Tmax (°C) Tmin (°C)

Outplant
site

Tidal height
(m above MLLW)

Tmean

(°C) Overall
Mean±s.d.
range

Max.
range Overall

Mean±s.d.
range

Max.
range

Orientation of
attachment site

No. individuals
from exposed site

No. individuals
from protected site

Tidepool 1.45 16.83 26.25 1.80±0.78 3.00 13.00 0.32±0.12 0.50 45 deg above
horizontal;
facing west

3 3

Low 1.04 16.62 33.75 4.50±4.29 12.80 12.20 1.30±0.61 2.75 45 deg above
horizontal;
facing
southwest

6 6

High 1.72 17.68 38.5 7.00±2.58 14.20 11.80 0.94±0.25 1.50 Horizontal 6 6

Tidal height (i.e. elevation) of each field site was determined with a TopCon surveying system (GTS-211D Total Station, Topcon, Livermore, CA, USA) in
reference to the HMS USGS benchmark. Individuals whose thermocouple was not functioning properly for a significant portion of the measurement period were
excluded from calculations.
MLLW, mean lower low water.
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valve gape for each of 21 individuals. Note that we retained data for
additional mussels for which only one of these measures was
available for later analyses.
All body temperature data were corrected based on individual

thermocouple calibrations performed under a range of temperatures
(5–45°C) in a laboratory water bath. Corrected temperatures were
rounded to the nearest 0.25°C, the nominal resolution of the
thermocouples. The mean daily maximum temperature, overall
maximum temperature, cumulative degree-hours above 25°C (Denny
et al., 2011) and additional metrics (see below) were calculated for
each mussel.
Valve gaping behavior determines the availability of oxygen

(Jansen et al., 2009; Nicastro et al., 2010), which is necessary for
sustained aerobic metabolism. However, high oxygen levels and/or
cycles of hypoxia and reoxygenation can also lead to increased
amounts of oxidative damage sustained by an individual (Li and
Jackson, 2002). Hall effect gape datawere processed to create a scaled
output for each individual. The data were filtered with a first order
Butterworth filter (10-s window) to smooth the signal. After
smoothing, the lower 1st percentile and the upper 99th percentile
(the maximum observed change from baseline for that individual)
values were identified and used to scale the data into relative opening
values between 0 and 100%. For full details, see Miller and Dowd
(2017). For cases in which magnets or Hall effect sensors were
dislodged during deployment in the field, a new zero point was
determined immediately after reattachment. For each individual we
calculated the proportion of time spent open during the field
monitoring period. A gaping threshold of 20% of the maximum gape
was established from empirical cumulative distribution functions of
each individual’s gape data (Miller and Dowd, 2017). Specifically,
these functions indicated an inflection point at roughly 20% of
maximum gape, with mussels spending a high proportion of time
both above and below 20%open but very little time around this value.
In addition, M. californianus of the same size as those used in this
study generally started pumping water between 15% and 20%
opening in a laboratory tank, so 20% represents an opening value at
which we may generally assume that valves are open enough to
sustain water flow (L.P.M., personal observations). Lastly, previous
studies have shown that a gaping threshold of 20% represents a 95%
probability of valves being closed in bivalve mollusks (Jou et al.,
2013; Ballesta-Artero et al., 2017). Thus, we considered a mussel to
be ‘open’ and to have access to food and oxygen when the gape was
greater than 20% of the maximum. Gaping behavior was only
observed in mussels during high tide; they did not gape at low tide
when exposed to air (Miller and Dowd, 2017). Interestingly, even
constantly submerged tidepool individuals closed up as a group
during low tide.

Physiological measurements
Macromolecular oxidative damage
DNA oxidation (8-OHdG) assay
The oxidative DNA adduct 8-hydroxy-2′-deoxyguanosine (8-OHdG),
one of the most prevalent types of oxidative damage to DNA, can
serve as an oxidative stress biomarker in a wide range of organisms
including mammals and aquatic invertebrates (Liu et al., 2004; Li
et al., 2005; Valavanidis et al., 2006; Halliwell and Gutteridge, 2007;
Lister et al., 2015). Heat stress increases the amount of 8-OHdG
(Huang et al., 2012, 2015), and this oxidative DNA damage can result
inmutagenesis (Kasai, 1997; Halliwell, 2000).We used a competitive,
enzyme-linked immunosorbent assay (ELISA) for quantitative
detection of 8-OHdG (Japan Institute for the Control of Aging,
Nikken Seil Co., Ltd, Fukuroi City, Japan). DNAwas extracted from

approximately 25 mg of gill tissue from each individual with a
NucleoSpin Tissue Kit (Macherey-Nagel, Düren, Germany), digested
with nuclease P1 to fragment the DNA into single nucleotides, and
treated with alkaline phosphatase to convert single nucleotides to
single nucleosides. After this sample pretreatment, the 8-OHdG
ELISA kit was used according to the manufacturer’s instructions,
loading 16.5 µg of digested DNA for each individual. Each individual
was run in duplicate.

Lipid hydroperoxide (LOOH) assay
Lipid peroxidation occurs along cellular membranes via a chain
reaction of peroxyl radicals under oxidative stress. Lipid
peroxidation is expected to increase following exposure to high
temperatures (Ando et al., 1997; Deschaseaux et al., 2010). It can
compromise membrane structure and function, alter ion transport
and inhibit metabolic processes (Halliwell and Gutteridge, 1990;
Girotti, 1998; Catalá, 2009). To quantify this oxidative damage
to lipids, we performed a microplate-based version of the
ferrous oxidation of xylenol orange (FOX) assay (Wolff, 1994;
Hermeslima and Storey, 1995; Gay and Gebicki, 2003) as in
Jimenez et al. (2015). Roughly 40 mg of gill tissue from each
individual was used.

Antioxidant capacities
We measured antioxidant capacity against peroxyl radicals
(involved in the chain reaction leading to formation of LOOH)
and catalase enzymatic activity against hydrogen peroxide. Gill
tissue (0.1 g) was diced and put in a 1:9 (mass:volume) solution of
75 mmol l−1 PBS (pH 7.0). Tissues were homogenized in a bead
homogenizer for two 2-min rounds at 50 Hz and placed on ice for
2 min in between rounds. Homogenates were then centrifuged for
30 min at 17,900 g in 4°C, and supernatants were frozen at −80°C
until use in assays.

Oxygen radical absorbance capacity (ORAC) assay
Although this response is not universal (see Jimenez et al., 2016),
antioxidant capacity against peroxyl radicals might be expected to
increase following heat stress in order to prevent LOOH damage. A
microplate-based version of the competitive ORAC assay (Cao
et al., 1999; Prior and Cao, 1999) was used to estimate antioxidant
capacities against peroxyl radicals according to the methods in
Jimenez et al. (2016).

Catalase enzyme activity
Catalase enzyme activity is predicted to increase under heat stress
(Steare and Yellon, 1994; Almeida et al., 2015). Catalase activity
was measured as described in Jimenez et al. (2016) by monitoring
the rate of decrease in hydrogen peroxide absorbance at 240 nm
with a temperature-controlled spectrophotometer (Beers and Sizer,
1952). Samples were run in triplicate; replicates were averaged to
give a single measure for each individual.

Gill osmolyte contents
Under heat stress conditions, the tissue contents of some osmolytes
can increase (Li et al., 2009; Kumar et al., 2014; Wang et al., 2014;
Ghaedi and Andrew, 2016), and these select osmolytes can act as
thermoprotectants (Somero and Yancey, 1997; Yancey, 2005).
Contents of organic osmolytes were determined from the mussels
from the field sites. In a parallel laboratory study, osmolytes of
common-gardened animals were quantified before, during and
shortly after exposure to a single, acute heat stress event to test for
any short-term changes in osmolyte contents.
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Gill osmolyte quantification from mussels monitored with the
MusselTracker system
Osmolytes were isolated from mussel gill using the extraction and
high-performance liquid chromatography (HPLC) quantification
method of Wolff et al. (1989). Gill samples (mean mass=150 mg)
were thawed on ice, each side of each hemibranch segment was
blotted twice on a laboratory wipe and the sample was weighed.
Samples were homogenized in perchloric acid in a bead homogenizer
for 3 min at 20 Hz plus 1 min at 30 Hz, then centrifuged to pellet
proteins. The supernatants were neutralized with 2 mol l−1 KOH and
run through C18 hydrophobic resin cartridges to remove lipids. Five
solute compounds were quantified by HPLC: alanine (Ala), glycine
betaine (GlyBet), glucose (Glc), glycine (Gly) and taurine (Tau).
Standards for each of these compounds were run in triplicate. Note
that the contents reported in mmol kg−1 are considerably lower (by a
factor of approximately four) than the actual intracellular
concentrations (mmol l−1), owing to dilution with extracellular
fluids that are generally low in organic osmolytes (Yancey, 2005).
Because the tissue processing method was uniform across samples,
this dilution does not impact the statistical interpretations.

Gill osmolyte profiles over an acute, laboratory heat stress event
Mussels 60–75 mm long (n=6 per time point) were collected from a
wave-exposed site (MLLW +0.9 m) at HMS and held under
common-garden conditions in a flow-through seawater system for
2 weeks (Dowd and Somero, 2013). During this time, mussels were
continuously immersed at an average temperature of 14°C and fed
every other day with a mixture of algal species (Shellfish Diet
1800©, Reed Mariculture, San Jose, CA, USA). ‘Baseline’ group
mussels remained immersed in the flow-through system during the
4-h treatment period. ‘Heated’ and ‘4 h post-heating’ group mussels
were emersed and exposed to heat stress using an electric coil heater
and a Micro-Infinity temperature controller (Newport Electronics,
Santa Ana, CA, USA). Temperature was ramped at +7°C h−1 from
15°C to 36°C to simulate solar heating on a hot day during low tide
(Tomanek and Somero, 1999; Lockwood et al., 2010; Denny et al.,
2011). The mussels were held at 36°C for one additional hour before
the heated group was dissected. The post-heating mussels were
reimmersed in the flow-through seawater system for 4 h prior to
dissection, in order to detect any osmolyte peaks that might occur
during recovery from heat stress, as has been observed for Hsp70
(Gracey et al., 2008). Gill tissue was removed from the mussels,
frozen in liquid nitrogen, and stored at −80°C for later extraction.
Osmolytes were isolated from these gill tissue samples and
quantified via HPLC using the techniques described above.

Statistical analyses
For our statistical analyses, each individual mussel was the unit of
experimentation (we have individual data records for each mussel,
not one sensor per acrylic plate). In addition, because a single plate
was placed at each outplant site, we cannot make site-level
generalizations to other tidepool, low or high intertidal sites.

Univariate model selection
For each of the nine physiological variables measured in the
MusselTracker-instrumented animals, we used an automated,
exhaustive model selection approach to select the terms that
provided the most informative general linear model (GLM) using
the glmulti package in R (Calcagno and Mazancourt, 2010). The
full model included origin (exposed or protected), outplant location
(high, low and tidepool) and their interaction as factors. Individual
metrics of thermal history and valve gape were included as

continuous predictors. Both of these metrics were included as
predictors because they are not perfectly correlated in the field; for
example, valve closure during aerial exposure does not always
coincide with warm temperatures (Miller and Dowd, 2017). Several
MusselTracker thermocouples were damaged prior to the end of the
outplant period, preventing use of the complete 23-day dataset to
generate metrics of thermal history. Therefore, to enhance the
available sample size, we used individuals’ maximum body
temperatures on 20 July 2015, a warm day on which 26 of 30
thermocouples were still logging data, as our metric of thermal
history. This valuewas very strongly positively correlated with other
metrics of cumulative thermal stress (e.g. Pearson’s r=0.89, 0.90
and 0.76 with mean daily maximum temperature, overall maximum
temperature and degree-hours above 25°C, respectively; P<0.001
for each). For the metric of gaping behavior, we used the proportion
of time with the valves spent in an open position (>20% of
maximum) that would allow for gas exchange, feeding and/or waste
excretion. As for thermal history, other metrics of gaping behavior
were strongly positively correlated with the chosen metric (e.g.
Pearson’s r=0.89 with the proportion of time greater than 40% of
maximum gape). Lastly, based on graphical exploration of the data,
we included in the full model interactions between outplant location
and thermal history and between outplant location and gape to allow
for site-specific patterns. We also visually examined residual plots
using the car package in R (Fox andWeisberg, 2011) to confirm that
there was no evidence of heteroscedasticity. Lipid hydroperoxide
data (LOOH) were Box–Cox transformed to satisfy the assumption
of normality; all other variables were untransformed.

The 95% confidence set of best-ranked models (the set of models
whose cumulative Akaike’s information criterion weights add up to
0.95; Burnham and Anderson, 2002) for each physiological variable
was chosen from 50 possible combinations of terms based on a
modified version of Akaike’s information criterion adjusted for
small sample sizes (AICc) (Hurvich and Tsai, 1989). From this
confidence set, the best statistical model with the lowest AICc was
selected. Type III ANOVA tests were run for the best model for each
physiological variable to determine statistical significance for each
predictor variable, with α=0.05. Note that these P-values do not
indicate whether this model with the lowest AICc value is
statistically the best model; rather, for each model, these P-values
indicate whether each particular predictor variable significantly
influences the given physiological variable.

Because none of the best models had strong Akaike weights
>0.9, conservative model coefficients for each physiological
variable were derived via model averaging across the 95%
confidence set. In addition, to further assess the relative
importance of each predictor variable for each of the nine
physiological variables, predictor weights (w) were also
calculated (by summing the Akaike weights for each model in
the confidence set in which that variable appears) based on all
models in each variable’s 95% confidence set (Burnham and
Anderson, 2002). The predictor with the largest predictor weight is
deemed to be the most important.

For each physiological variable, added-variable plots were
constructed using the car package in R (Fox and Weisberg, 2011)
to illustrate the effect of the predictor of interest while controlling
for all other terms in the best statistical model (Wang, 1985; Cook
and Weisberg, 1999). These plots compare two sets of residuals.
The x-axis represents residuals resulting from regression of the
focal predictor variable (e.g. thermal history) against the
remaining predictor variables, and the y-axis represents residuals
computed from regression of the response variable (e.g. DNA
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damage) against the predictor variables but omitting the focal
predictor variable. A statistically significant slope indicates a
significant contribution of the focal predictor in the full GLM, and
the slope corresponds to that predictor’s coefficient β in the
statistical model.

Multivariate principal components analysis
We used principal components analysis (PCA) in the FactoMineR
package in R (Le et al., 2008) to assess global patterns of individuals’
physiological profiles. The nine measures of physiological status for
each individual were used as inputs to this analysis. For each of the
first three principal components, which explained a total of 64.9% of
the overall variance in the physiological dataset, we determined the
categorical and continuous predictors that significantly correlated
with that principal component using the dimdesc function of
FactoMineR (Husson et al., 2010).

RESULTS
Our data reveal mussels’ physiological responses to sublethal
environmental variation in the field. There were no mortalities
attributed to abiotic conditions, despite some individuals reaching
body temperatures that approached the LT50 for this species, 38.2°C
(Denny et al., 2011). However, three mussels at the high site were
consumed by black oystercatchers, Haematopus bachmani, during
low tides.

Variation in individual history metrics
Outplant sites differ in inter-individual variation in body temperature
Mussels at the high intertidal site experienced considerably warmer
maximum body temperatures and slightly cooler minimum body
temperatures than individuals at either the low or the tidepool site
(Table 1). We also observed a significant degree of inter-individual
variation in daily maximum body temperatures within each outplant
plate (Table 1; Table S1). The high site exhibited the most variation,
with a mean range of individuals’ daily maximum body
temperatures of 7.0°C; on one day the difference between the
warmest and coolest mussels within the high site exceeded 14°C
(Table 1). The maximum temperature on 20 July, our metric for
thermal history, ranged from 17.25°C for an individual at the low
site to 35.75°C for a mussel at the high site.

Valve gaping behavior varies among and within sites
Mussels at the high outplant site spent a significantly lower proportion
of time gaping (mean=18.56%) compared with the tidepool
(mean=60.98%) and low (mean=61.42%) outplant sites (one-way
ANOVA, P<0.001; Tukey HSD post hoc comparisons against high
site, P<0.001 for both). Across all three sites, the proportion of time
spent gaping ranged from 12.10% in an individual at the high site to
71.89% for a mussel at the low site. Within-site, inter-individual
variation in the proportion of time spent gaping was most pronounced
at the tidepool and low outplant sites, with values ranging from∼45 to
70% in each (Table S1).

Individual history explains variation in five of nine
physiological variables
Oxidative damage to DNA correlates with thermal history
The 95% confidence set for 8-OHdG DNA damage included 17
candidate models, and 11 of these included themaximum temperature
on 20 July (i.e. thermal history) as a predictor (Table S2). The best
model included origin site (exposed<protected), outplant site (tidepool
and low<high), their interaction, thermal history and the interaction
between outplant site and thermal history. All predictors except origin

site had significant effects in this best model (Table 2). The variable
with the highest predictor weight was outplant site (w=0.89; Table 2),
and the eight mussels at the high intertidal site included the seven
highest measures of oxidative DNA damage (Fig. S1A). Across all
three sites, 8-OHdG was positively correlated with thermal history
(averaged model coefficient±confidence interval: β=0.030±
0.077 ng ml−1 °C–1 on 20 July; F2,11=8.4, P=0.015). This
relationship was site-specific, as indicated by the significant
interaction between outplant site and thermal history and the strong
positive slope among mussels at the high intertidal site (Table 2,
Fig. 1A). Interestingly, all three individuals from the wave-exposed
origin site that were deployed in the tidepool had significantly lower
values of 8-OHdG (t-test,P=0.03, d.f.=3.70; Fig. S1A). This is likely a
result of differences in gaping behavior; these individuals were open
for a smaller percentage of time compared with wave-protected origin
mussels in the tidepool (Table S1).

Catalase antioxidant capacity depends on origin site and correlates
with thermal history
There were nine candidate models in the 95% confidence set
(Table S2). The best statistical model for catalase activity included a
positive effect of thermal history (β=9.17±13.33 U °C–1 on 20 July;
F1,18=6.7, P=0.020) and a significant effect of origin site
(protected>exposed; βprot=147.36±85.79 U; F1,18=1.9, P=0.002,
d.f.=1; Table 2, Figs 1B, 2; Fig. S1C). Similarly, the two predictors
with the highest predictor weight were origin site (w=0.914) and
thermal history (w=0.75; Table 2).

Gill osmolyte contents correlate with thermal history and gape
Mussels’ individual histories significantly influenced the contents of
three of the five gill osmolytes. The best model for taurine content
included thermal history and gape, although only the effect of thermal
history was statistically significant (β=0.88±1.01 mmol kg−1 °C–1 on
20 July; F1,16=12.3, P=0.003; Table 2, Fig. 1C; Fig. S1D). Thermal
history was included in 11 of the 14 candidate models in the 95%
confidence set, and thermal history was also the predictor variable
with the highest predictor weight (w=0.853; Table 2). Gape was
included in nine of the 14 candidate models (Table S2), and gape
had the second highest predictor weight (w=0.625, β=28.03±
66.71 mmol kg−1; Table 2).

There were 16 candidate models in the confidence set for glycine
betaine content (Table S2). The best model for glycine betaine
content included positive effects of both thermal history (β=0.97±
1.67 mmol kg−1 °C–1 on 20 July; F1,16=10.0, P=0.006) and gape
(β=44.03±73.79 mmol kg−1; F1,16=8.7, P=0.010; Table 2, Fig. 1D,
E; Fig. S1E,G). Gape (w=0.785) and thermal history (w=0.685) also
had the highest predictor weights (Table 2).

Of the 13 candidate models for glycine content, the best model
only included a positive effect of gape (β=4.31±8.80 mmol kg−1;
F1,17=14.8, P=0.001; Table 2, Fig. 1F; Fig. S1H). Gape also had the
highest predictor weight (w=0.601; Table 2). Although the model
in which glycine was regressed only on thermal history was
statistically significant (β=−0.018±0.15 mmol kg−1 °C–1 on 20
July; F1,17=9.4, P=0.007; Fig. S1F), the AICc value was more than
three units larger for this model, and the predictor weight for thermal
history was also much lower (w=0.215; Table 2).

Oxidative damage to lipids is potentially affected by thermal history
There were 15 models in the 95% confidence set for lipid damage
(Table S2). Although the best model indicated no influence of any of
the predictor variables (Table 2), 10 of the 15models in the candidate
set included thermal history (β=2.810E–3±1.479E–3 mol l−1 °C–1 on
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Fig. 1. Added-variable plots showing the influence of predictor variables in the general linear model (GLM) on the response variables (measures of
oxidative damage, antioxidant capacity or osmolyte content). These plots document the impact of the x-axis term of interest on the response variable,
taking into account the effects of all other model terms. The x-axis represents residuals when the focal predictor variable (thermal history in the left-hand column,
gaping behavior in the right-hand column) is regressed against all other predictor variables, while the y-axis represents the residuals when the dependent variable
is regressed against all predictor variables other than the focal variable. The x-axis values vary across plots because the number of predictor variables varied for
each response variable, as determined by multivariate model selection. Note that all P-values listed below are ANOVA results for the whole GLM across all
outplant sites as shown in Table 2. Open symbols in the plots represent protected-site origin individuals, and filled symbols represent exposed-site origin
individuals. Maximum temperature on 20 July significantly affects (A) 8-OHdG oxidative DNA damage (n=20 animals; P=0.015), (B) catalase activity (n=21
animals; P=0.019), (C) taurine content (n=19 animals; P=0.003) and (D) glycine betaine content (n=19 animals; P=0.006). Hotter temperatures correlate with
more oxidative damage, greater enzyme activity and higher osmolyte contents. The proportion of time spent gaping significantly affects (E) glycine betaine
content (n=19 animals; P=0.010) and (F) glycine content (n=19 animals; P=0.001). Higher proportion of time spent gaping correlates with higher osmolyte
contents.
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20 July), and the maximum temperature on 20 July also had the
highest predictor weight (w=0.622; Fig. S1B; Table 2).

Predictors affecting alanine content are ambiguous
Model selection for the osmolyte alanine generated more ambiguity
than in the six variables above. Out of the 15 candidate models
(Table S2), the best statistical model for alanine content included

outplant site only (low and tidepool<high, βlow=−0.42±
1.37 mmol kg−1, βtidepool=−0.77±2.04 mmol kg−1; F2,16=8.7,
P=0.003), and outplant site also had the highest predictor weight
(w=0.432) (Table 2). However, three other variables (origin site,
maximum temperature on 20 July and gape) had similar predictor
weights (worigin=0.242, wtemp=0.343, wgape=0.327). Thermal history
had a positive effect on alanine content and gape had a negative effect.

Physiological variables correlated with no predictor variables
The best model for antioxidant capacities against peroxyl
radicals (ORAC, eight candidate models) and gill glucose
contents (nine candidate models) was the null model (Table 2;
Table S2). Origin site had the highest predictor weight for both
variables (wORAC=0.192, wGlc=0.379; Table 2), although these
values are very low in comparison to the other physiological
variables.

Multivariate analysis reveals strong correlations of thermal
history and gape with physiological profiles
The PCA distinguished the high site from the low and tidepool
sites along the first principal component (PC1) dimension
(ANOVA, F2,22=36.8, P<0.001; Fig. S2); there was no
significant effect of origin site along PC1 (F1,23=0.75, P=0.397)
or PC2 (F1,23=1.41, P=0.247). PC1 explained 27.3% of the total
variation in the physiological profiles among individual mussels
(Fig. S2). The physiological variables that were significantly
positively correlated with scores on PC1 were 8-OHdG, taurine and
alanine; glycine content was strongly negatively correlated with
PC1 (Fig. 3; Fig. S2). Individual thermal history also was
significantly positively correlated with mussels’ scores on PC1
(Pearson’s r=0.83; Figs 3 and 4). In contrast, gape was significantly
negatively correlated with mussels’ scores on PC1 (Pearson’s r=
−0.65, P<0.001). Neither thermal history nor gape was
significantly correlated with individual scores on PC2, which
explained 23.4% of the overall physiological variation (Fig. S2).
Contents of glycine betaine and taurine, as well as catalase activity
and LOOH lipid damage, were positively correlated with scores on
PC2. Alanine and glucose contents were negatively correlated with
scores on PC2 (Fig. 3; Fig. S2).
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Fig. 2. Added-variable plot showing that the origin collecting site of the
mussels (protected>exposed) significantly affects catalase activity
(n=21 animals; ANOVA P<0.001). Note that this P-value is an ANOVA result
for the whole GLM across all outplant sites as shown in Table 2. This plot
documents the impact of the x-axis term of interest (here, origin site) on the
response variable (here, catalase enzyme activity), taking into account the
effects of all other model terms. The x-axis represents residuals when the focal
predictor variable is regressed against all other predictor variables, while the y-
axis represents the residuals when the dependent variable is regressed
against all predictor variables other than the focal variable. Open symbols in
the plot represent protected-site origin individuals, and filled symbols represent
exposed-site origin individuals.
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No change in gill osmolyte profiles over an acute, laboratory
heat stress event
No significant differences were detected among the three laboratory
heat stress time points for any of the five measured osmolytes
(Glc P=0.29, Tau P=0.11, Ala P=0.56, Gly Bet P=0.50, Gly
P=0.90, d.f.=2 for all, one-way ANOVA; Table S3). For parameter
estimates and standard errors, see Table S3.

DISCUSSION
We utilized novel MusselTracker technology to record in situ body
temperature and gaping behavior of M. californianus individuals
placed at high intertidal, low intertidal and tidepool sites for 23 days.
When combined with biochemical measurements on the same
individuals, these data indicate substantial environmentally mediated
physiological variation among individual mussels. In support of our
hypotheses, we found that higher body temperatures significantly
correlate with increased oxidative DNA damage, as well as with
catalase antioxidant capacity and taurine and glycine betaine
osmolyte contents. Notably, these correlations emerged despite
conducting the experiments in an uncontrolled field setting. Overall,
inter-individual variation in recent thermal history appears to be a
significant driver of inter-individual physiological variation within
mussel beds.

Correlating thermal history, behavior and physiology in the
field
This study took advantage of the fact that adultM. californianus are
sessile, overcoming logistical constraints that have prevented
development of similar datasets in other species. Previous studies,
including several in mussels, have used biomimetic devices (Denny
et al., 2011; Jimenez et al., 2015), measured live animals at only a
single time point (Elvin and Gonor, 1979), or measured the
temperature of the surrounding environment to approximate body
temperature (Bay and Palumbi, 2014). Thus, these studies do not
adequately capture the thermal experience of individuals. To date,
we are not aware of any other studies that have continuously
monitored field body temperatures of the same individuals that were
sampled for subsequent biochemical analyses.
The MusselTracker system also measured individuals’ valve

gaping behavior in the field. Previous studies investigating
differences in Mytilus gaping behavior were primarily conducted
under controlled laboratory conditions or with small sample sizes
for short periods of time in the field (Wilson et al., 2005; Anestis
et al., 2007; Dowd and Somero, 2013; Olabarria et al., 2016).
Therefore, our work provides novel insight into how gaping
behavior over the course of multiple tidal cycles in the field affects
inter-individual variation in physiology.

Inter-individual variation in thermal history predicts
physiology
Univariate statistical analyses indicated that inter-individual
variation in thermal history significantly affected four of the nine
physiological variables measured. For all four of these variables, the
best model included a positive correlation with thermal history.
These included levels of oxidative DNA damage, as well as activity
of the antioxidant enzyme catalase and content of the osmolytes
taurine and glycine betaine.
Our biochemical analyses focused on oxidative damage and

antioxidant capacities (Jimenez et al., 2015, 2016). Although
reactive oxygen species (ROS) are a normal by-product of aerobic
metabolism (Abele et al., 2002; Buttemer et al., 2010), elevated
temperatures during low tide and/or cycles of hypoxia and

reoxygenation owing to shell valve movements can cause
enhanced production of these damaging intermediates (Abele
et al., 2002; de Oliveira et al., 2005; Heise et al., 2006; Tomanek
and Zuzow, 2010; Dowd and Somero, 2013; Rivera-Ingraham et al.,
2013). (Because M. californianus close their valves during hot low
tides in the field, to definitively disentangle the effects of
temperature and valve movements on ROS, future manipulative
laboratory studies will need to be performed that expose individuals
to varying temperatures while keeping valve opening constant.)
Overall, when the level of ROS being produced exceeds the capacity
of antioxidant defenses, oxidative stress occurs in the form of
damage to macromolecules such as proteins, lipids and DNA
(Halliwell and Gutteridge, 2007). In the present study, oxidative
damage to DNA was dependent on individual thermal history
during the outplant period. Although results for oxidative lipid
damage were more ambiguous, 10 of the 15 models in the 95%
confidence set included an effect of body temperature. This
potential relationship between lipid damage and body temperature
is supported by previous work, which suggested lipid peroxidation
in M. californianus rises rapidly with acute thermal stress and then
returns to baseline levels within 24 h (Jimenez et al., 2016).

Patterns of osmolyte accumulation and catalase activity allow us to
draw tentative conclusions regarding the kinetics of physiological
responses to thermal history. First, the laboratory time-series
experiment revealed that none of the five measured osmolyte
contents changed after a single, acute heat stress. This suggests that
organic osmolyte contents gradually adjust to the environmental
context, rather than responding to a single low tide event. In addition,
measurements of catalase enzyme activity in this study, together with
previous field and laboratory results (Dowd et al., 2013), suggest that
catalase activity is initially determined by the site in which the animal
settles (origin site effect), although we cannot conclude yet whether
such differences reflect effects of developmental environment on
physiology or genetically predetermined variation (see below). What
is clear is that subsequent thermal experience and/or food availability
superimposes adjustments on these baseline differences in catalase
over multiple tidal cycles. Although catalase activity is plastic,
antioxidant capacity against peroxyl radicals seems not to be. This
result from animals in the field agrees with previous work in a
controlled laboratory setting, which detected differences among
mussel tissues in their peroxyl radical scavenging capacities, yet
found no evidence for an increase in peroxyl ORAC activity with a
history of emersion at high temperature (Jimenez et al., 2016).

Although our data help to clarify the relationships between
thermal history and physiological status, additional studies are
required to determine the relative importance of the various metrics
that can be used to quantify an individual’s thermal experience [e.g.
mean daily maximum temperature, degree-hours (i.e. thermal time)
above some threshold, total number of warm days, overall maximum
body temperature]. Because all thermal historymetricswere strongly
correlated, our experimental design did not allow us to determine
which of these possible indices of thermal stress drives physiological
responses. Future work must manipulate different thermal history
metrics in controlled conditions to provide further insight.

Lastly, while this study strongly suggests that variation in
temperature stress plays a significant role in generating
physiological variation, previous work has shown that food
availability also affects antioxidant enzyme capacities such as
catalase in M. californianus (Dowd et al., 2013). Food availability
to individual mussels could not be controlled in our field study. In
addition, responses to hypoxia such as metabolic suppression,
expression of heat shock proteins and/or increased antioxidant
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capacity that are associated with tight-valve closure physiology could
generate resistance to extremes of another variable such as
temperature (Shick et al., 1988; Anestis et al., 2010; Nogueira
et al., 2017). Therefore, to confirm that variation in thermal history is
indeed the primary driver of the observed physiological differences,
further work should manipulate thermal history against a backdrop of
constant food availability and gaping status.

OxidativeDNAdamage as an indicator of cumulative thermal
stress
The oxidative DNA damage marker 8-OHdG appears to be an
indicator of accumulated macromolecular damage from thermal
stress inM. californianus. Notably, 8-OHdG’s positive relationship
with thermal history was most pronounced at the high, warm
intertidal site, in accord with the recent proposal that variation
around a stressful mean temperature plays a significant role in
eliciting physiological differences among individuals (Jimenez
et al., 2015). Accumulation of 8-OHdG has been observed with
increasing age (Gruber et al., 2015) and with exposure to toxicants
(Steinert, 1999) in other marine bivalve molluscs. Here, any age-
related effects on 8-OHdG levels, such as those that might exist
between origin sites due to variation in size-at-age (Connor and
Robles, 2015), were controlled for by including origin as a predictor
in the model selection procedure. To our knowledge, no other
studies have investigated the relationship between oxidative DNA
damage and temperature stress in bivalves. Our data indicate that 8-
OHdG is a useful metric for examining the effects of cumulative
thermal stress on wild populations.
Heat stress also causes other forms of DNA damage in marine

mussels, yet the genotoxic effects of abiotic stress have received
relatively little attention. For example, acute heat stress induced both
single- and double-stranded breaks in DNA in laboratory studies of
Mytilus congeners (Yao and Somero, 2012). The physiological
costs, such as those related to DNA repair (Yao and Somero, 2013),
and possible mutagenic consequences of heat-induced DNA
damage merit further study.

Taurine as a thermoprotective osmolyte
Although a handful of studies have demonstrated that osmolytes
accumulate under laboratory heat stress conditions in wheat, yeast
and aphids (Li et al., 2009; Kumar et al., 2014; Wang et al., 2014;
Ghaedi and Andrew, 2016), to our knowledge this is the first study
showing that the content of an osmolyte molecule with known
thermoprotective properties is dynamically regulated in response to
thermal stress in nature. Individual thermal history was significantly
and positively correlated with taurine content. Taurine also had the
highest overall content out of the gill osmolytes measured, as has
been observed in the osmotic profiles of other shallow-dwelling
benthic molluscs (Yancey, 2005). These results are consistent with a
role for taurine as an endogenous thermoprotectant in mussels.
Accumulation of taurine could provide several biochemical

benefits. This sulfonic ß-amino acid is a protein-structure stabilizer
that, at least for the model enzyme lysozyme, was found to be the
most effective thermoprotectant among the common osmolytes
(Arakawa and Timasheff, 1985). Thermoprotectants are ‘extrinsic’
stabilizers that act to maintain appropriate marginal stability of
proteins and exert similar stabilizing effects across the proteome
(Somero and Yancey, 1997; Yancey, 2005; Somero et al., 2017).
Taurine’s positive relationship with thermal history could also be
related to stabilization of phospholipid membranes via its
interactions with embedded proteins (Huxtable, 1992). Heat stress
over the tidal cycle drives homeoviscous remodeling of cellular

phospholipid membrane composition inM. californianus (Williams
and Somero, 1996); taurine might further stabilize these remodeled
membranes. Moreover, taurine may act indirectly as an antioxidant,
possibly by regulating components of the mitochondrial electron
transport chain (Jong et al., 2012). For instance, taurine decreased
oxidative damage and increased total DNA recovery after damage in
calf thymus DNA (Messina and Dawson, 2000). Alternatively, the
correlation of taurine content and individual thermal history could
relate to taurine’s role as a prominent osmoregulatory agent (Lange,
1963). Heat stress has been documented to impair osmoregulatory
ability (Tang et al., 2014), and the maintenance of active
osmoregulation has been hypothesized to contribute to thermal
tolerance (Jian and Huang, 2001; Xu et al., 2013). Further
mechanistic work is required to document the relative importance
of these various putative benefits of taurine accumulation under
episodic exposure to thermal stress.

For tissue contents of taurine to rise, there must be an increase in
its retention and/or production. The observed accumulation of
taurine with heat stress could be driven by changes in the abundance
of the transmembrane taurine transporter (TAUT) (Huxtable, 1992;
Hosoi et al., 2005, 2007; Lin et al., 2016). The expression of TAUT
mRNA increases under moderate heat stress in a deep-sea mussel
(Nakamura-Kusakabe et al., 2016), and transcription of TAUT is
induced by heat shock factor 1 in mice (Jung et al., 2013). Following
thermal stress, taurine production may increase as irreversibly
damaged proteins are degraded into their constituent amino acids,
which may be reused or further modified. Taurine is derived from
cysteine in a temperature-dependent fashion in mammals and fungi
(Soboleva et al., 2004; Kumar et al., 1983). If mussels accumulate
thermoprotective breakdown products such as taurine after episodes
of proteotoxic heat stress, then a de facto acclimatization mechanism
is in action.

Complex kinetics of glycine betaine and glycine
The best model for glycine betaine content included positive effects of
both thermal history and gaping, complicating interpretation of this
osmolyte’smechanistic significance.High contents of glycine betaine,
together with its activity as a weak to moderate thermoprotectant
(Gopal and Ahluwalia, 1993; Somero and Yancey, 1997; Auton et al.,
2006), suggest it could fulfill a thermoprotectant role similar to that of
taurine. For example, addition of glycine betaine to cultured
mammalian kidney cells suppresses HSP70 elevation during heat
shocks (Sheikh-Hamad et al., 1994). Indeed, glycine betaine and
taurine contents were positively correlated across individual mussels
(Pearson’s r=0.80, P<0.001, d.f.=23). However, unlike taurine,
glycine betaine content was also correlated positively with gape, and
it did not load significantly on PC1.

Glycine was distinct in the PCA analysis as the only osmolyte
whose content loaded negatively on PC1, corroborating its
positive univariate relationship with gape. Given the inverse
relationship between glycine and thermal history on PC1, it is
plausible that glycine decreases in thermally stressed individuals at
the high site to offset accumulation of taurine and maintain
osmotic balance. However, the weak negative correlation between
taurine and glycine contents across individuals was insignificant
(Pearson’s r=−0.33, P=0.104, d.f.=23). Glycine is a prominent
osmotic effector in other bivalves, but its kinetics in response to
stress events vary markedly across taxa (Bishop et al., 1994;
Paynter et al., 1995). In the cases of both glycine betaine and
glycine, production and clearance kinetics need to be determined
at higher temporal resolution over the course of events
characterized by thermal stress, oxygen limitation or both.
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Alanine, gaping behavior and anaerobic metabolism
The statistical results were the most ambiguous for the osmolyte
alanine. The best univariate model for alanine content included
outplant site only, although three other variables had roughly equal
predictor variable weights. In the PCA, alanine content was
positively correlated with PC1 scores and negatively correlated
with PC2 scores; thermal history was positively correlated and gape
history was negatively correlated with PC1. Though alanine can be a
weak protein stabilizer, the contents estimated in M. californianus
gill tissue (2.7–7.6 mmol kg−1) were probably not high enough to
impact general protein stability. The changes in alanine content
more likely relate to anaerobic metabolism during emersion.
Alanine is made by transamination of the glycolytic end-product
pyruvate, and both compounds accumulate in mussels under anoxic/
emersion conditions (Isani et al., 1995; Connor and Gracey, 2012).
Overall, alanine’s known correlation with anaerobic metabolism

could indicate that variation in its content is more linked to vertical
location in the intertidal zone (here, outplant site) and to
corresponding constraints on gaping behavior, rather than to body
temperature. Specifically, mussels at the high intertidal site used in
this study experienced longer periods of emersion and spent a
significantly lower proportion of time with the valves open; however,
we cannot make any generalizations to other high intertidal sites
because our study was not replicated at the level of outplant site. The
links among gaping behavior, reliance of mussels on anaerobic
metabolism during emersion (Bayne et al., 1976) when they also are
prone to experience thermal stress, and accumulation of alanine in the
tissues are potentially complex. Ultimately, further manipulative
experiments are needed in order to clearly distinguish the effects on
alanine contents of heat stress during emersion and variation in
oxygen availability related to gaping behavior.

Potential contributions of developmental environment and
adult plasticity to physiological status
Mussels in this study were collected from two origin sites (wave-
exposed andwave-protected), but therewas little evidence for origin-
specific biochemical patterns. Of the nine physiological variables
measured, only one, catalase enzyme activity, was unambiguously
affected by origin site. Similarly, origin site was uncorrelated
with overall physiological profiles in the multivariate analysis.
Although individuals at the wave-exposed site experienced more
intense wave action and cooler body temperatures during their post-
settlement life compared with mussels from the wave-protected
site (Denny et al., 2011), these factors appear to be largely
superseded by recent experience. Adult phenotypic plasticity,
particularly in the antioxidant system, is one plausible mechanism
for these observations. Similarly, adult mussels from the same two
origin sites exhibited comparable degrees of mean plasticity of
antioxidant capacities in another recent study (Jimenez et al., 2015).
Interestingly, the results of that study did implicate origin as a factor
contributing to inter-individual variation in physiological plasticity.
Specifically, the magnitude of variation around the mean antioxidant
status changed more among mussels from the protected site upon
manipulation of the magnitude of variation in body temperature
(Jimenez et al., 2015). Furthermore, M. californianus individuals
from these two origin sites differed in their mean metabolic rates
even after common gardening (protected<exposed). Overall, these
current and previous findings suggest that a complex set of
interacting factors determines an individual’s current level of
defense against environmental stress. Characterizing the relative
influences of genetic constraint, developmental environment and
adult physiological plasticity in response to recent history represents

a major challenge for environmental physiologists, particularly in the
context of climate change. Future work must clarify the time scales
over which environmental histories influence physiology. Tools
such as the MusselTracker system provide an outstanding
opportunity to achieve this goal, for example by correlating
repeated measures of individuals’ biochemical status with
measures of their in situ experience.

Conclusions
Individual-level monitoring provides novel insight into environmental
and behavioral drivers of physiological variation within populations.
Mussels’ physiological profiles seemed to respond in a plastic fashion
to recent experience in the field; however, repeated samples of the
same individuals in different environmental contexts are needed to
demonstrate conclusively that compensatory phenotypic plasticity is
occurring. To our knowledge this is the first study to demonstrate a
link between individual thermal history in the field and the tissue
content of organic osmolytes with thermoprotective properties.
Furthermore, variation in behavior among individuals also
contributes to physiological variation, particularly when a behavior
such as valve gaping so intimately relates to physiological function (in
this case, access to oxygen for aerobic respiration). Going forward,
more work examining inter-individual physiological and behavioral
variation is needed in field settings in order to make accurate
predictions regarding physiological, ecological and evolutionary
consequences of a changing environment.
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	 Table	S1.	Summary	of	individual	thermal	history	and	gape	metrics.	

Origin	

Individual	

ID	

Outplant	

Site	

Mean	

Temperature	

(°C)	

Maximum	

Temperature	

(°C)	

July	20	

Maximum	

Temperature	

(°C)	

Mean	Daily	

Maximum	

Temperature	

(°C)	

Percent	

of	Time	

Spent	

Gaping	

Exposed	 17y	 Tidepool	 16.83	 24	 19.75	 20.33	 59.29	

Exposed	 13y	 Tidepool	 16.82	 23.75	 19.75	 20.63	 63.54	

Exposed	 10y	 Tidepool	 16.98	 26.25	 20.5	 21.87	 43.61	

Protected	 80o	 Tidepool	 16.83	 25.25	 19.75	 21.43	 71.35	

Protected	 81o	 Tidepool	 16.81	 24.25	 20	 20.67	 70.92	

Protected	 82o	 Tidepool	 16.71	 23.75	 20.25	 20.96	 57.14	

Exposed	 82w	 Low	 16.70	 27.75	 17.75	 18.95	 50.31	

Exposed	 83w	 Low	 16.63	 21.75	 17.5	 NA	 NA	

Exposed	 84w	 Low	 17.03	 25.5	 18.75	 19.68	 45.44	

Exposed	 85w	 Low	 NA	 NA	 24	 NA	 59.16	

Exposed	 87w	 Low	 16.40	 28.5	 20.5	 19.67	 64.90	

Exposed	 88w	 Low	 16.33	 21	 17.25	 18.52	 71.89	

Protected	 77o	 Low	 16.67	 24.25	 18	 18.70	 59.07	

Protected	 78o	 Low	 16.73	 31.25	 20	 NA	 NA	

Protected	 79o	 Low	 17.26	 33.75	 29.25	 22.70	 NA	

Protected	 83o	 Low	 16.39	 32.5	 28	 21.14	 59.53	

Protected	 84o	 Low	 16.31	 24	 17.5	 18.63	 71.61	

Protected	 85o	 Low	 16.38	 21.75	 17.25	 18.77	 70.85	

Exposed	 93w	 High	 NA	 NA	 35.75	 NA	 NA	

Exposed	 94w	 High	 17.01	 33.5	 29.75	 23.82	 12.10	

Exposed	 95w	 High	 NA	 NA	 NA	 NA	 16.58	

Exposed	 89w	 High	 17.70	 32.75	 26	 25.43	 18.21	

Exposed	 90w	 High	 NA	 NA	 NA	 NA	 NA	

Exposed	 92w	 High	 18.30	 38.5	 31.75	 29.82	 18.43	

Protected	 90o	 High	 17.33	 34.75	 29.5	 26.60	 16.91	

Protected	 92o	 High	 NA	 NA	 NA	 NA	 NA	

Protected	 93o	 High	 NA	 NA	 25.5	 NA	 24.00	

Protected	 86o	 High	 18.05	 31.75	 31.75	 26.29	 23.68	

Protected	 88o	 High	 17.69	 37	 29.75	 27.40	 NA	

Protected	 89o	 High	 NA	 NA	 NA	 NA	 NA	
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Table	S2.	95%	confidence	set	of	best-ranked	regression	models	resulting	from	model	selection	
using	glmulti	command	in	glmulti	R	package.	Best	model,	based	on	AICc,	is	in	bold.	

Candidate	models	 AICc delta	
AIC	

wi acc	wi

OHdG	

1	 Field_site	+	Origin	+	Temp_july20max	+	Origin:Field_site	+	

Field_site:Temp_july20max	

12.133	 0	 0.256	 0.256	

2	 Field_site	+	Origin	+	Origin:Field_site	 12.136	 0.003	 0.256	 0.512	

3	 Field_site	+	Origin	 13.603	 1.47	 0.123	 0.635	

4	 Field_site	+	Origin	+	Temp_july20max	+	Gape_PctOpen_20	+	Origin:Field_site	+	

Field_site:Temp_july20max	

15.133	 3	 0.0572	 0.6922	

5	 Field_site	+	Origin	+	Temp_july20max	 15.57	 3.437	 0.0459	 0.7381	

6	 Origin	+	Temp_july20max	+	Field_site:Temp_july20max	 15.72	 3.587	 0.0426	 0.7807	

7	 Field_site	 16.02	 3.887	 0.0367	 0.8174	

8	 Field_site	+	Origin	+	Temp_july20max	+	Origin:Field_site	 16.03	 3.897	 0.0365	 0.8539	

9	 Field_site	+	Origin	+	Gape_PctOpen_20	+	Origin:Field_site	 17.758	 5.625	 0.0154	 0.8693	

10	 Field_site	+	Origin	+	Gape_PctOpen_20	 17.775	 5.642	 0.0152	 0.8845	

11	 Field_site	+	Temp_july20max	+	Gape_PctOpen_20	+	Field_site:Temp_july20max	 18.136	 6.003	 0.0127	 0.8972	

12	 Field_site	+	Gape_PctOpen_20	 18.143	 6.01	 0.0127	 0.9099	

13	 Temp_july20max	+	Field_site:Temp_july20max	 18.764	 6.631	 0.0093	 0.9192	

14	 Origin	+	Temp_july20max	 18.979	 6.846	 0.0083

5	

0.92755	

15	 Field_site	+	Temp_july20max	 19.132	 6.999	 0.0077

4	

0.93529	

16	 Field_site	+	Origin	+	Temp_july20max	+	Field_site:Temp_july20max	 19.152	 7.019	 0.0076

6	

0.94295	

17	 Field_site	+	Temp_july20max	+	Gape_PctOpen_20	+	Field_site:Temp_july20max	+	

Field_site:Gape_PctOpen_20	

19.16	 7.027	 0.0076

3	

0.95058	

LOOH	

1	 1	 424.247	 0	 0.172	 0.172	

2	 Temp_july20max	+	Field_site:Temp_july20max	 424.473	 0.226	 0.153	 0.325	

3	 Temp_july20max	+	Gape_PctOpen.20	 424.725	 0.478	 0.135	 0.46	

4	 Field_site	+	Temp_july20max	 424.93	 0.683	 0.122	 0.582	

5	 Origin	 426.203	 1.956	 0.0645	 0.6465	

6	 Gape_PctOpen.20	 426.528	 2.281	 0.0548	 0.7013	

7	 Temp_july20max	 426.545	 2.298	 0.0544	 0.7557	

8	 Origin	+	Temp_july20max	+	Field_site:Temp_july20max	 427.259	 3.012	 0.038	 0.7937	

9	 Field_site	+	Origin	+	Temp_july20max	 427.683	 3.436	 0.0308	 0.8245	

10	 Field_site	 427.869	 3.622	 0.0281	 0.8526	

11	 Temp_july20max	+	Gape_PctOpen.20	+	Field_site:Temp_july20max	 428.013	 3.766	 0.0261	 0.8787	

12	 Origin	+	Temp_july20max	+	Gape_PctOpen.20	 428.174	 3.927	 0.0241	 0.9028	

13	 Field_site	+	Temp_july20max	+	Gape_PctOpen.20	 428.428	 4.181	 0.0212	 0.924	

14	 Origin	+	Temp_july20max	 428.876	 4.629	 0.0169	 0.9409	

15	 Origin	+	Gape_PctOpen.20	 428.977	 4.73	 0.0161	 0.957	
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Ala	

1	 Field_site	 56.488	 0	 0.188	 0.188	

2	 Temp_july20max	 56.81	 0.322	 0.16	 0.348	

3	 Gape_PctOpen.20	 56.998	 0.51	 0.146	 0.494	

4	 Field_site	+	Origin	+	Origin:Field_site	 57.294	 0.806	 0.125	 0.619	

5	 Temp_july20max	+	Gape_PctOpen.20	 59.184	 2.696	 0.0488	 0.6678	

6	 Gape_PctOpen.20	+	Field_site:Gape_PctOpen.20	 59.223	 2.735	 0.0478	 0.7156	

7	 Field_site	+	Temp_july20max	 59.425	 2.937	 0.0432	 0.7588	

8	 Temp_july20max	+	Field_site:Temp_july20max	 59.658	 3.17	 0.0385	 0.7973	

9	 Origin	+	Temp_july20max	 59.735	 3.247	 0.037	 0.8343	

10	 Field_site	+	Origin		 59.789	 3.301	 0.036	 0.8703	

11	 Field_site	+	Gape_PctOpen.20	 60.021	 3.533	 0.0321	 0.9024	

12	 Origin	+	Gape_PctOpen.20	 60.253	 3.765	 0.0286	 0.931	

13	 Temp_july20max	+	Gape_PctOpen.20	+	Field_site:Gape_PctOpen.20	 62.811	 6.323	 0.0079

5	

0.93895	

14	 Origin	+	Temp_july20max	+	Gape_PctOpen.20	 62.832	 6.344	 0.0078

7	

0.94682	

15	 Field_site	+	Origin	+	Gape_PctOpen.20	+	Origin:Field_site	 62.916	 6.428	 0.0075

5	

0.95437	

GlyBet	

1	 Temp_july20max	+	Gape_PctOpen.20	 123.931	 0	 0.39	 0.39	

2	 Temp_july20max	+	Gape_PctOpen.20	+	Field_site:Gape_PctOpen.20	 126.335	 2.404	 0.117	 0.507	

3	 Gape_PctOpen.20	+	Field_site:Gape_PctOpen.20	 126.743	 2.812	 0.0957	 0.6027	

4	 1	 127.17	 3.239	 0.0773	 0.68	

5	 Origin	+	Temp_july20max	+	Gape_PctOpen.20	 127.591	 3.66	 0.0626	 0.7426	

6	 Temp_july20max	 128.903	 4.972	 0.0325	 0.7751	

7	 Origin	 129.036	 5.105	 0.0304	 0.8055	

8	 Field_site	+	Temp_july20max	+	Gape_PctOpen.20	 129.516	 5.585	 0.0239	 0.8294	

9	 Origin	+	Gape_PctOpen.20	+	Field_site:Gape_PctOpen.20	 129.593	 5.662	 0.023	 0.8524	

10	 Temp_july20max	+	Gape_PctOpen.20	+	Field_site:Temp_july20max	 129.838	 5.907	 0.0204	 0.8728	

11	 Gape_PctOpen.20	 129.912	 5.981	 0.0196	 0.8924	

12	 Origin	+	Temp_july20max	+	Gape_PctOpen.20	+	Field_site:Gape_PctOpen.20	 129.926	 5.995	 0.0195	 0.9119	

13	 Field_site	+	Gape_PctOpen.20	 130.709	 6.778	 0.0132	 0.9251	

14	 Field_site	 130.713	 6.782	 0.0131	 0.9382	

15	 Origin	+	Temp_july20max	 131.192	 7.261	 0.0103	 0.9485	

16	 Temp_july20max	+	Field_site:Temp_july20max	 131.512	 7.581	 0.0088

1	

0.95731	

Glc	

1	 1	 38.492	 0	 0.432	 0.432	

2	 Gape_PctOpen.20	 40.776	 2.284	 0.138	 0.57	

3	 Origin	 40.962	 2.47	 0.126	 0.696	

4	 Temp_july20max	 41.026	 2.534	 0.122	 0.818	

5	 Field_site	 43.361	 4.869	 0.0378	 0.8558	

6	 Origin	+	Gape_PctOpen.20	 43.524	 5.032	 0.0349	 0.8907	

7	 Origin	+	Temp_july20max	 43.92	 5.428	 0.0286	 0.9193	
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8	 Temp_july20max	+	Gape_PctOpen.20	 43.998	 5.506	 0.0275	 0.9468	

9	 Field_site	+	Temp_july20max	 46.083	 7.591	 0.0097

1	

0.95651	

Gly	

1	 Gape_PctOpen.20	 81.03	 0	 0.392	 0.392	

2	 Field_site	 82.826	 1.796	 0.16	 0.552	

3	 Origin	+	Gape_PctOpen.20	 84.282	 3.252	 0.0771	 0.6291	

4	 Temp_july20max	+	Gape_PctOpen.20	 84.285	 3.255	 0.077	 0.7061	

5	 Temp_july20max	 84.576	 3.546	 0.0666	 0.7727	

6	 Field_site	+	Origin	 85.733	 4.703	 0.0373	 0.81	

7	 Temp_july20max	+	Field_site:Temp_july20max	 85.781	 4.751	 0.0364	 0.8464	

8	 Field_site	+	Temp_july20max	 85.957	 4.927	 0.0334	 0.8798	

9	 Field_site	+	Gape_PctOpen.20	 86.391	 5.361	 0.0269	 0.9067	

10	 Gape_PctOpen.20	+	Field_site:Gape_PctOpen.20	 87.455	 6.425	 0.0158	 0.9225	

11	 Origin	+	Temp_july20max	 87.623	 6.593	 0.0145	 0.937	

12	 Origin	+	Temp_july20max	+	Gape_PctOpen.20	 88.04	 7.01	 0.0118	 0.9488	

13	 Origin	+	Temp_july20max	+	Field_site:Temp_july20max	 88.664	 7.634	 0.0086

2	

0.95742	

Tau	

1	 Temp_july20max	+	Gape_PctOpen.20	 113.896	 0	 0.28	 0.28	

2	 Temp_july20max	 114.474	 0.578	 0.209	 0.489	

3	 Temp_july20max	+	Gape_PctOpen.20	+	Field_site:Gape_PctOpen.20	 115.194	 1.298	 0.146	 0.635	

4	 Origin	+	Temp_july20max	 116.44	 2.544	 0.0784	 0.7134	

5	 Gape_PctOpen.20	+	Field_site:Gape_PctOpen.20	 116.53	 2.634	 0.0749	 0.7883	

6	 Origin	+	Temp_july20max	+	Gape_PctOpen.20	 117.184	 3.288	 0.054	 0.8423	

7	 Origin	+	Temp_july20max	+	Gape_PctOpen.20	+	Field_site:Gape_PctOpen.20	 119.301	 5.405	 0.0187	 0.861	

8	 Temp_july20max	+	Field_site:Temp_july20max	 119.657	 5.761	 0.0157	 0.8767	

9	 Temp_july20max	+	Gape_PctOpen.20	+	Field_site:Temp_july20max	+	

Field_site:Gape_PctOpen.20	

119.664	 5.768	 0.0156	 0.8923	

10	 Field_site	+	Temp_july20max	 119.791	 5.895	 0.0147	 0.907	

11	 Origin	+	Gape_PctOpen.20	+	Field_site:Gape_PctOpen.20	 119.855	 5.959	 0.0142	 0.9212	

12	 Field_site	 119.927	 6.031	 0.0137	 0.9349	

13	 Field_site	+	Temp_july20max	+	Gape_PctOpen.20	 120.296	 6.4	 0.0114	 0.9463	

14	 Field_site	+	Temp_july20max	+	Gape_PctOpen.20	+	Field_site:Gape_PctOpen.20	 120.573	 6.677	 0.0099

2	

0.95622	

ORAC	

1	 1	 264.519	 0	 0.478	 0.478	

2	 Origin	 267.068	 2.549	 0.134	 0.612	

3	 Gape_PctOpen.20	 267.253	 2.734	 0.122	 0.734	

4	 Temp_july20max	 267.264	 2.745	 0.121	 0.855	

5	 Origin	+	Gape_PctOpen.20	 270.125	 5.606	 0.029	 0.884	

6	 Origin	+	Temp_july20max	 270.156	 5.637	 0.0285	 0.9125	

7	 Temp_july20max	+	Gape_PctOpen.20	 270.331	 5.812	 0.0262	 0.9387	

8	 Field_site	 270.333	 5.814	 0.0261	 0.9648	

CAT	
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1	 Origin	+	Temp_july20max	 255.66	 0	 0.544	 0.554	

2	 Origin	+	Temp_july20max	+	Gape_PctOpen.20	 258.941	 3.281	 0.105	 0.649	

3	 Origin	+	Gape_PctOpen.20	 258.991	 3.331	 0.103	 0.752	

4	 Origin	 259.197	 3.537	 0.0927	 0.8447	

5	 Field_site	+	Origin	+	Temp_july20max	 260.586	 4.926	 0.0463	 0.891	

6	 Origin	+	Temp_july20max	+	Field_site:Temp_july20max	 260.984	 5.324	 0.0379	 0.9289	

7	 Field_site	+	Origin	+	Temp_july20max	+	Field_site:Temp_july20max	 263.539	 7.879	 0.0106	 0.9395	

8	 Field_site	+	Origin	 263.583	 7.923	 0.0104	 0.9499	

9	 Field_site	+	Origin	+	Temp_july20max	+	Gape_PctOpen.20	 263.666	 8.006	 0.0099

3	

0.95983	
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Table	S3.	One-way	ANOVA	results	indicate	that	there	are	no	changes	in	gill	osmolyte	profiles	over	an	acute,	laboratory	heat	stress	

event.	There	are	no	significant	differences	among	the	three	laboratory	treatments	for	any	of	the	five	measured	osmolytes.	

Parameter	estimates	are	shown	for	effects	of	one-time	acute	heat	stress	on	osmolyte	contents.	“Heated”	group	was	emersed	and	

ramped	to	36˚C	over	3	h,	then	held	there	for	1	h	and	subsequently	dissected.	“4	h	post-heat”	received	the	same	treatment,	then	

recovered	in	an	aquarium	at	14	˚C	for	4	h	prior	to	dissection.	Effects	are	estimated	relative	to	“Baseline”	group,	which	never	left	the	

aquarium.	

Osmolyte	 Df	
Sum	of	Squares	
(between,	within)	

Mean	Squares	
(between,	within)	 F	 P	

Heated	 4	h	post-heat	

Glucose	 2,	16	
35.85,	
212.23	

17.92,	
13.26	 1.351	 0.289	

1.030	±	
0.397	

0.321	±	
0.397	

Taurine	 2,	16	
6951.00,	

21,598.45	
3476.00,	
1,349.90	 2.575	 0.109	

-3.830	±
4.638

-8.119	±
4.638

Alanine	 2,	16	
38.50,	
506.05	

19.23,	
31.63	 0.608	 0.558	

1.068	±	
0.771	

0.744	±	
0.771	

Glycine	
betaine	 2,	16	

1683.00,	
18,773.78	

841.3,	
1,173.36	 0.717	 0.504	

1.776	±	
4.352	

-2.479	±
4.352

Glycine	 2,	16	
7.70,	

556.40	
3.86,	
34,77	 0.111	 0.896	

-0.206	±
0.762

-0.571	±
0.762
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Table	S4.	All	final	metrics	of	individual	thermal	and	gape	history,	environment	(source	and	
	 outplant	site),	and	the	nine	physiological	variables	used	for	the	analysis	in	this	manuscript.	

Origin	 ID	 Length	 Field_site	 OHdG	 LOOH	
Temp_july20
max	 Gape_PctOpen	 Ala	 GlyBet	 Glc	 Gly	 Tau	 PeroxylORAC	 CAT	

Exposed	 93w	 68.26	 High	 1.65	 9.27E-05	 35.75	 NA	 5.27	 71.88	 1.21	 5.63	 82.77	 376.89	 466.19	

Exposed	 94w	 67.85	 High	 1.72	 7.98E-05	 29.75	 0.12	 6.02	 54.25	 1.21	 5.43	 66.09	 348.63	 362.13	

Exposed	 95w	 67.42	 High	 1.55	 7.87E-05	 NA	 0.17	 7.70	 58.28	 2.18	 6.28	 69.07	 209.96	 262.23	

Exposed	 89w	 62.78	 High	 1.22	 1.34E-04	 26.00	 0.18	 4.38	 65.25	 1.43	 5.48	 72.97	 286.93	 362.13	

Exposed	 90w	 71.52	 High	 NA	 NA	 NA	 NA	 NA	 NA	 NA	 NA	 NA	 NA	 NA	

Exposed	 92w	 65.33	 High	 1.82	 1.03E-04	 31.75	 0.18	 5.87	 74.28	 2.23	 8.41	 76.47	 284.26	 407.92	

Exposed	 82w	 69.34	 Low	 1.07	 7.58E-05	 17.75	 0.50	 4.62	 58.23	 1.44	 9.78	 63.43	 535.26	 422.49	

Exposed	 83w	 65.01	 Low	 0.77	 1.12E-04	 17.50	 NA	 4.77	 72.04	 1.04	 11.41	 77.03	 577.16	 412.08	

Exposed	 84w	 70.48	 Low	 0.96	 1.58E-04	 18.75	 0.45	 4.09	 56.23	 1.59	 7.88	 63.89	 205.89	 270.56	

Exposed	 85w	 65.99	 Low	 1.03	 1.16E-04	 24.00	 0.59	 5.16	 74.95	 1.50	 11.53	 76.40	 261.11	 397.51	

Exposed	 87w	 68.35	 Low	 1.14	 1.55E-04	 20.50	 0.65	 5.84	 57.44	 1.56	 11.97	 62.49	 368.84	 366.29	

Exposed	 88w	 63.51	 Low	 1.44	 9.29E-05	 17.25	 0.72	 5.87	 63.40	 2.43	 10.99	 69.57	 170.12	 283.05	

Exposed	 17y	 65.97	 Tidepool	 0.13	 7.98E-05	 19.75	 0.59	 4.11	 66.12	 2.16	 12.04	 70.38	 550.77	 270.56	

Exposed	 13y	 72.84	 Tidepool	 0.41	 7.36E-05	 19.75	 0.64	 3.70	 68.48	 1.45	 7.68	 68.38	 164.74	 332.99	

Exposed	 10y	 70.13	 Tidepool	 0.73	 8.29E-05	 20.50	 0.44	 4.71	 67.08	 1.62	 11.06	 68.46	 283.12	 457.87	

Protected	 90o	 67.73	 High	 1.62	 7.78E-05	 29.50	 0.17	 7.00	 60.92	 3.14	 7.54	 71.36	 325.51	 472.44	

Protected	 92o	 71.13	 High	 NA	 NA	 NA	 NA	 NA	 NA	 NA	 NA	 NA	 NA	 NA	

Protected	 93o	 61.27	 High	 1.59	 7.56E-05	 25.50	 0.24	 7.19	 68.35	 2.70	 8.41	 75.33	 397.35	 491.17	

Protected	 86o	 63.49	 High	 1.84	 1.51E-04	 31.75	 0.24	 5.66	 73.03	 1.15	 6.89	 82.49	 287.73	 770.05	

Protected	 88o	 69.86	 High	 1.67	 1.17E-04	 29.75	 NA	 7.03	 69.74	 2.27	 6.55	 77.46	 362.73	 399.59	

Protected	 89o	 62.94	 High	 NA	 NA	 NA	 NA	 NA	 NA	 NA	 NA	 NA	 NA	 NA	

Protected	 77o	 62.83	 Low	 1.20	 1.23E-04	 18.00	 0.59	 NA	 NA	 NA	 NA	 NA	 205.58	 453.71	

Protected	 78o	 72	 Low	 1.21	 1.28E-04	 20.00	 NA	 2.92	 68.28	 1.98	 10.81	 73.04	 405.71	 353.81	

Protected	 79o	 67.81	 Low	 1.22	 1.64E-04	 29.25	 NA	 5.97	 61.35	 1.55	 10.93	 66.05	 577.81	 593.15	

Protected	 83o	 60.79	 Low	 NA	 2.87E-04	 28.00	 0.60	 NA	 NA	 NA	 NA	 NA	 421.57	 636.85	

Protected	 84o	 66.36	 Low	 1.17	 7.95E-05	 17.5	 0.72	 3.14	 67.00	 0.80	 12.47	 66.41	 205.93	 561.93	

Protected	 85o	 64.39	 Low	 1.22	 1.07E-04	 17.25	 0.71	 3.97	 61.26	 2.57	 9.41	 63.38	 542.37	 362.13	

Protected	 80o	 67.54	 Tidepool	 1.00	 1.25E-04	 19.75	 0.72	 3.65	 69.17	 1.62	 9.63	 67.22	 193.85	 324.67	

Protected	 81o	 67.21	 Tidepool	 1.09	 1.10E-04	 20.00	 0.71	 3.59	 73.13	 1.51	 8.74	 75.62	 369.86	 428.73	

Protected	 82o	 64.39	 Tidepool	 1.43	 1.13E-04	 20.25	 0.57	 3.90	 62.49	 1.38	 13.62	 68.54	 422.71	 574.42	
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Figure	S1.	Scatterplots	showing	the	relationship	between	individual	history	metrics	and	

physiological	variables	(oxidative	damage,	antioxidant	capacity,	and	osmolyte	content).	Note	

that	these	plots	do	not	control	for	the	effects	of	other	variables	and	are,	therefore,	less	

informative	than	the	added-variable	plots	presented	in	the	main	text.	Correlation	between	the	

maximum	temperature	on	July	20	and	A)	8-OHdG	oxidative	DNA	damage	(hotter	temperatures	

correlate	with	more	damage	at	the	high	intertidal	site;	n	=	20	animals),	B)	LOOH	lipid	oxidative	

damage	(n	=	21	animals),	C)	catalase	enzyme	activity	(n	=	21	animals),	D)	taurine	content	(n	=	19	

animals),	E)	glycine	betaine	content	(n	=	19	animals),	and	F)	glycine	content	(n	=	19	animals)	for	

each	of	the	three	outplant	sites	(tidepool,	low,	and	high).	While	the	best	model	for	glycine	

content	only	included	a	positive	effect	of	gape	(Table	2),	the	model	in	which	glycine	was	

regressed	only	on	maximum	temperature	on	July	20	was	statistically	significant	(β	=	-0.28	mmol	

kg-1	per	°C;	p	=	0.007)	and	thus	the	relationship	between	glycine	content	and	temperature	is	

shown	here.		Correlation	between	the	proportion	of	time	spent	gaping	and	G)	glycine	betaine	

content	(n	=	19	animals),	and	H)	glycine	content	(n	=	19	animals)	for	each	of	the	three	outplant	

sites	(tidepool,	low,	and	high).	Circles	indicate	high	outplant	site	individuals,	squares	indicate	

low	outplant	site	individuals,	and	triangles	indicate	tidepool	outplant	site	individuals.	Open	

symbols	indicate	individuals	from	the	protected	origin	site,	and	filled-in	symbols	indicate	

exposed	origin	site	individuals.		Regression	lines	for	each	of	the	three	outplant	sites	are	shown	

solely	to	aid	in	visual	interpretation	of	the	data	(solid	=	high	outplant	site,	dashed	=	low	site,	

dotted	=	tidepool).	
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Figure	S2.	Results	of	Principal	Components	Analysis	based	on	all	nine	physiological	variables.		

Principal	component	scores	in	each	of	the	first	two	dimensions	for	each	individual	mussel	for	

which	all	of	the	physiological	data	were	available	(n	=	25).	The	site	of	origin	is	indicated	by	the	

face	shading	of	the	marker	(filled	=	exposed;	open	=	protected).	The	marker	shape	denotes	the	

outplant	field	site	(circle	=	high;	square	=	low;	triangle	=	tidepool).	The	low	and	tidepool	field	

sites	are	separated	from	the	high	site	along	the	first	principal	component	(dimdesc	poutplant	<	

0.001).		
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