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On the prediction of extreme ecological events
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Abstract. Ecological studies often focus on average effects of environmental factors, but
ecological dynamics may depend as much upon environmental extremes. Ecology would
therefore benefit from the ability to predict the frequency and severity of extreme environmental
events. Some extreme events (e.g., earthquakes) are simple events: either they happen or they
don’t, and they are generally difficult to predict. In contrast, extreme ecological events are often
compound events, resulting from the chance coincidence of run-of-the-mill factors. Here we
present an environmental bootstrap method for resampling short-term environmental data
(rolling the environmental dice) to calculate an ensemble of hypothetical time series that
embodies how the physical environment could potentially play out differently. We use this
ensemble in conjunction with mechanistic models of physiological processes to analyze the
biological consequences of environmental extremes. Our resampling method provides details of
these consequences that would be difficult to obtain otherwise, and our methodology can be
applied to a wide variety of ecological systems. Here, we apply this approach to calculate return
times for extreme hydrodynamic and thermal events on intertidal rocky shores. Our results
demonstrate that the co-occurrence of normal events can indeed lead to environmental extremes,
and that these extremes can cause disturbance. For example, the limpet Lottia gigantea and the
mussel Mytilus californianus are co-dominant competitors for space on wave-swept rocky
shores, but their response to extreme environmental events differ. Limpet mortality can vary
drastically through time. Average yearly maximum body temperature of L. gigantea on
horizontal surfaces is low, sufficient to kill fewer than 5% of individuals, but on rare occasions
environmental factors align by chance to induce temperatures sufficient to kill .99% of limpets.
In contrast, mussels do not exhibit large temporal variation in the physical disturbance caused by
breaking waves, and this difference in the pattern of disturbance may have ecological
consequences for these competing species. The effect of environmental extremes is under added
scrutiny as the frequency of extreme events increases in response to anthropogenically forced
climate change. Ourmethod can be used to discriminate between chance events and those caused
by long-term shifts in climate.

Key words: disturbance and extreme events; ecological surprises; environmental and thermal stress;
environmental bootstrap; hydrodynamic forces; intertidal rocky shores; limpets; Lottia gigantea; mussels;
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INTRODUCTION

The physical environment can be a controlling factor

in ecological dynamics. In some cases, the pertinent

characteristic of the environment is the average value of a

particular factor such as temperature, precipitation,

salinity, etc. As long as extreme thresholds are not

exceeded (e.g., cooling to the point of ice nucleation

within tissues, or heating to the point of irreparable

protein damage), the performance of individuals, the

behavior of populations, and composition of communi-

ties are often well described by mean conditions (e.g.,

Brown et al. 2004). However, environmental variables do

exceed important biological bounds in nature, and there

are many cases in which ecological dynamics depend

more upon the extremes of environmental factors than

on their means (Gaines and Denny 1993). Extreme levels

of certain variables can lead to impairment of function or

outright mortality of individuals, with important impli-

cations for populations, communities, and ecosystems.

Extreme events can influence community dynamics and

biodiversity by selectively removing community domi-

nants, thereby freeing up resources for other species (e.g.,

Dayton 1971, Connell 1978, Sousa 1979). Similarly,

disturbance associated with extreme events can reduce a

community’s biotic resistance to invasive species and

increase rates of invasion (Gross et al. 2005, Altman and

Whitlatch 2007). Extreme events can cause sufficiently

dramatic ecological change that recovery is greatly

delayed or impossible. Such effects arise when popula-

tions are pushed below some minimum density threshold

(e.g., the Allee effect), or when a community or
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ecosystem enters an alternate stable state (Allee 1949,

Folke et al. 2004). The effects of extremes are under ever-

increasing scrutiny as the frequency, and thus the

ecological importance, of extreme events continues to

rise in response to anthropogenically forced climate

change (IPCC 2007).

There is a growing realization that many extreme

ecological events are caused not by the action of a single

extreme environmental stressor, but rather by synergistic

interaction among multiple run-of-the-mill stressors

(e.g., Paine et al. 1998). For example, canyons in New

Mexico are subjected to occasional heavy rain, but the

effect of rain on stream insects is typically muted

because vegetation retards runoff. Similarly, fires are

common in the canyonlands, and by themselves have

little direct effect on stream fauna. However, in 1996 a

large wildfire killed the vegetation in several canyons,

and was, by chance, immediately followed by repeated

downpours. The resulting floods severely eroded the

local streambeds, killing virtually all lotic insects in the

affected streams, and they have been slow to recover

(Vieira et al. 2004). Thus, the random co-occurrence of

‘‘normal’’ environmental factors led to an ecological

surprise (sensu Paine et al. 1998): an extreme event. How

likely is it that compound events such as this will occur?

Compound events have been analyzed extensively in

physics, fluid dynamics, and oceanography. These

systems can be relatively uncomplicated, allowing exact

solutions to be obtained, for instance, for the maximum

amplitude of sounds and the maximum height of ocean

waves (Denny and Gaines 2000). Ecological compound

events are more complex, but because they depend on

the chance alignment of easily measured everyday

phenomena, many compound ecological events are open

to statistical analysis and prediction. Here, we describe a

statistical approach to the prediction of extreme

ecological events (a modification of the moving-block

bootstrap) and illustrate its utility in two scenarios

drawn from intertidal ecology. Our approach can be

applied in a wide variety of ecological contexts.

ANALYSIS OF COMPOUND EXTREME EVENTS

Why is a new approach needed?

There is an extensive literature exploring the proba-

bility of extreme events (see Gaines and Denny 1993,

Denny and Gaines 2000, Coles 2001, Katz et al. 2005 for

reviews), and for many types of problems statistical

approaches are well established. In simple cases, the

statistics of extremes analyzes the empirical record of a

single variable to predict the probability that an extreme

value will occur. Often the value of interest is more

extreme than any in the empirical record, and statistics

provides a method for reliably extrapolating beyond

measured data (Coles 2001). More recently, this

univariate theory has been extended to analyze the

probability that extremes of two or more variables co-

occur (for a pertinent example, see de Haan and de

Ronde [1998]). Again, emphasis of the analysis is on

extrapolation beyond existing data (Coles 2001).

There are two important limitations to the use of this

type of extreme-value theory. First, standard extreme-

value theory does not handle well the temporal

autocorrelation and cross-correlation among variables;

typically the occurrence times and realized values of the

extremes for multiple variables are taken to be mutually

statistically independent. This may not be appropriate

when considering biological consequences, in particular

when ecological extremes depend on the time history of

the variables involved and not just on the instantaneous

extremes. Second, standard extreme-value theory is

typically applied to stationary time series, which makes

for difficulties in handling series with temporal evolution

and even seasonality. In addition, there is a practical

consideration. The complexity of multivariate analysis

increases rapidly with the number of variables under

consideration (Coles 2001). For many ecological cases,

where seven or more variables must be considered, this

complexity may be prohibitive for the average ecologist.

As a practical alternative tomultivariate extreme-value

analysis, we propose a relatively simple ‘‘environmental

bootstrap’’ procedure that is capable of incorporating the

complexities of ecological systems. The focus of our

method is not on extrapolation beyond the range of ex-

isting data, but rather on the probability that values

within the range of existing datamight randomly co-occur

in a pattern that leads to an ecological extreme event.

The environmental bootstrap

For any given habitat, the relevant physical environ-

ment is defined by a set of factors, each of which varies

through time. Our exploration of this variation proceeds

in three steps. Given a short-term empirical record of

environmental variables, we first identify the predictable

aspects of each. We then separate this predictable part

from the remainder, the stochastic part. Lastly, we

divide the stochastic part of each signal into segments

(¼ blocks) and rearrange these segments so that they can

be recombined with the predictable part of the signal to

yield new patterns. These new, hypothetical patterns of

fluctuation allow us to analyze how the environment

would be altered if chance had played out differently.

We approach the specifics of the analysis through an

example drawn from intertidal shores, where certain

combinations of wave height, wave period, and tidal

height can impose extreme hydrodynamic forces on

benthic organisms (see Plate 1). We begin with an

analysis of significant wave height, Hs, the average

height of the highest third of ocean waves. Hs is a

statistical index of ‘‘waviness’’ (Kinsman 1965, Denny

1988, 1995), and serves well as an example of the type of

environmental variable that can contribute to extreme

events.

Consider the hypothetical time series of Hs shown in

Fig. 1A, a 4-yr record of the wave climate at a particular

location. In this series, Hs is measured at discrete times
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(t ¼ t1, t2, . . . tn), and we denote the series with the

symbol Hs(t). Measurements are taken at constant

interval Dt (in this example, 1 h). (Symbols are listed

in Table 1.)

It is evident from inspection that there is an annual

cycle of wave heights: on average, waves are small in

summer (where the record begins) and large in winter.

Similarly, wave heights are less variable in summer and

more variable in winter. These predictable (¼average,
expected) seasonal cycles of the mean, x̄H(t), and

standard deviation, rH(t), of Hs are shown in Fig.

1B, C. Details of the calculation of x̄H(t), and rH(t) are

given in Appendix A. In short, we calculate x̄H(t) and

rH(t) for points within a specific measurement window

centered on the point at time t.

Having identified these predictable aspects of Hs(t),

our next task is to separate out the stochastic remainder,

and to adjust that stochastic signal so that segments of it

are statistically interchangeable. To this end, we need to

ensure that all segments of the stochastic signal are

identically distributed. For practical purposes, we

consider the signal to be identically distributed if it

meets four criteria: (1) the mean, (2) standard deviation,

and (3) shape of the distribution of data within segments

must be indistinguishable among segments anywhere

within the record; and (4) the autocorrelation function

of data must be indistinguishable among all segments.

We meet criterion 1 by calculating DHs(t), the

difference between the measured Hs and the predicted
Hs for each sampling time (Fig. 1D):

DHsðtÞ ¼ HsðtÞ � x̄HðtÞ: ð1Þ

The mean of these residuals is approximately 0 for
segments throughout the record. To meet criterion 2, we
divide each measured DHs by the predicted standard

deviation of Hs for that time in the year. That is, we
calculate a standardized residual:

DHs;stdðtÞ ¼
DHsðtÞ
rHðtÞ

: ð2Þ

The result is shown in Fig. 1E.
Our next task is to ensure that the shape of the distribu-

tion of standardized residuals is not correlated with x̄H(t),
the annual mean cycle ofHs. Shape can be quantified by a
variety of indices, but for present purposes, it is most
important that the skew of the distribution is not

correlated with the annual mean cycle. To test for this
possibility, a standard index of skew (Zar 1974) is
calculated for each point in the DHs,std time series in the

same fashion inwhich the standard deviation is calculated
(see Appendix A):

WðtÞ ¼
m
Xm

i¼1

½HsðtiÞ � x̄HðtiÞ�3

ðm� 1Þðm� 2Þr3
s

: ð3Þ

FIG. 1. Analysis of significant wave height data from Hopkins Marine Station. Four years of the seven-year data set are shown.
Panel (A) presents the raw significant wave-height data. Panels (B) and (C) depict the annual cycles of predicted significant wave
height and standard deviation, respectively, each repeated four times. Panel (D) shows the residuals of the raw wave-height data
from the annual mean, and panel (E) shows these residuals standardized to the annual pattern of wave-height standard deviation.
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Herem andrs are the number of data points and standard

deviation of data in the measurement window, respec-

tively. We then test this index for any correlation with the
mean cycle. If there is a substantial correlation, the signal

of standardized residuals must be adjusted and the

validity of the adjustment must be verified (see Appendix

A).
To this point, we have created a time series of

standardized DHs values (Fig. 1E) with constant mean

and constant standard deviation, and the shape of the

distribution of residuals is effectively constant across the
series. However, we must meet one last criterion before

we can rearrange segments of this time series: we must

ensure that the data in each segment have the same
autocorrelation function (ACF). As is characteristic of

physical measurements, each DHs,std is highly correlated

with values measured a short time (a short lag) before or

after, but the degree of correlation decreases with in-
creasing lag (Fig. 2). It is not clear how one would adjust

individual segments of the series to make their ACFs

equal, but it is possible to empirically confirm the

homogeneity among segments for a particular data set.

Note in Fig. 2 that residuals separated by .4.5 days are

effectively uncorrelated. The lag time at which the ACF

settles to 0 is one measure of the decorrelation time, d.

We have now ensured that the time series of standard-

ized residuals is effectively identically distributed. In light

of this statistical similarity across the record, we are free

to choose random segments of the DHs,n series and

recombine them with the predictable seasonal variation

x̄H to create a new wave-height record, a hypothetical

realization of what the wave-height record might have

been had the environmental dice rolled differently. To

create this hypothetical realization, we carry out a

moving-block bootstrap procedure (Carlstein 1986,

Künsch 1989, Efron and Tibshirani 1993, Bühlman and

Künsch 1995, 1999, Paparoditis and Politis 2003) as

follows. We choose at random from the DHs,std series a

segment of length equal to the decorrelation time (that is,

d/Dt points). Setting segment length to decorrelation time

ensures that any relevant autocorrelation in the signal is

retained in each segment. We then multiply the first

DHs,std value in this segment by the standard deviation

calculated for the first point in the time series, rH(t1), and

add it to the expected value for that point, x̄H(t1), to yield a

new, hypothetical significant wave height value. We

repeat this process with the second point in the segment

and rH(t2) and x̄H(t2), and so forth. At the end of this

process, we have d days of hypothetical record. We then

choose at random a second d-day segment from the DHs,n

time series (sampling with replacement) and use this new

random segment to calculate the next d-day segment of

the hypothetical wave-height record. We proceed in this

fashion until we have created an entire year-long record, a

record that is statistically similar to, but randomly

rearranged from, the original. We can repeat the entire

process as many times as desired to provide an ensemble

of year-long realizations of the wave record.

TABLE 1. Symbols used in the text.

Symbol Meaning Equation

A area (m2) 4
Cf force coefficient 5
d decorrelation time (d)
dmax maximum decorrelation time (d)
D water depth (m) 6
Fmax maximum force (N) 4
g acceleration due to gravity
Hb breaking wave height (m) 8
Hmax maximum wave height (m) 6
Hs significant wave height (m) 1
DHs residual from predicted Hs (m) 1
DHs,std standardized DHs 2
j rank 13
L lifetime
m number of points in a window 3
n total number of values
p probability density (1/R) 18
P cumulative probability 18
R return time (intervals) 15
Rper periodic return time (intervals)
Smax maximum hydrodynamic stress (N/m2) 5
Ŝ annual maximum hydrodynamic

stress (N/m2)
13

t time (s) 18
tr randomly chosen segment starting

time (d)
Dt time interval (s)
T wave period (s) 10
Umax maximum water velocity (m/s) 6
W skew 3
x̄H mean Hs (m) 1
X 100D/(gT 2) 9
a coefficient (N/m2) 14
b coefficient 14
c velocity amplification coefficient 11
e coefficient 14
q density of seawater (kg/m3) 4
r standard deviation of factor residuals
rH predicted r for Hs (m) 2
rs standard deviation of point in a window 3
s interval length (seconds) 10
/ body temperature (8C) 16, 17

FIG. 2. The autocorrelation function for standardized
residuals of significant wave height. The 95% confidence bounds
are shown; values within these bounds are not significantly
different from 0. The lag at which autocorrelation first reaches 0
is the decorrelation time, d.
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Now to the crux of the matter. We simultaneously

apply the same procedure to other aspects of the

environment measured at the same time and in the same

location as wave heights—wave period and tidal height

in this example—to create sets of coordinated, concur-

rent hypothetical realizations. For our purposes, it is

important that the sampling that leads to this ensemble

of sets is random in time but consistent across variables

(see Fig. 3). That is, when we choose a random time tr as

the beginning of a segment of wave height residuals, we

use the same start time for wave period and tide height.

In this fashion, we maintain in the set of hypothetical

realizations any cross-correlation among the standardized

residuals of environmental factors. For example, if for

some reason the tides tend to be higher than predicted

when waves are higher than predicted, this cross-

correlation is maintained as we resample blocks of the

time series of standardized residuals.

When resampling standardized residuals from multi-

ple environmental variables, we use the longest decorre-

lation time among the variables, dmax, as the block

length. This procedure ensures that pertinent autocor-

relation is included in the sampled segments of all

variables. (For details and exceptions, see Appendix A.)

Moving-block bootstraps can be sensitive to block

length (Efron and Tibshirani 1993, Bühlmann and

Künsch 1999). To test for any obvious bias tied to the

choice of dmax as block length, we repeat our whole

analysis with blocks 1/2, 2, and 3 times dmax.

Note that rearranging blocks of standardized residu-

als can result in calculated values of individual

environmental variables that fall outside the empirically

observed range. For instance, the highest predicted tide

in the empirical record might have coincided with a

negative tidal residual due to the chance passage of a

high-pressure cell in the atmosphere, resulting in a

lower-than-expected observed tidal maximum. If in our

random rearrangement of residuals the highest predicted

tide is coupled with a positive tidal residual, the result is

a higher calculated tide than any in the empirical record.

There is nothing physically implausible about this

calculation: in reality, the predicted tide (which is set

by celestial mechanics independent of meteorology)

might easily have occurred during the chance passage

of a low-pressure cell, resulting in an exceptionally high

tide such as that predicted by our rearrangement.

Although it is thus possible and reasonable that our

resampling method predicts values of individual vari-

ables that are more extreme than those empirically

measured, the possibility of calculating such out-of-

range values is not the driving force in our analysis, as

we will see below.

Once we have constructed an ensemble of realizations

for the factors of interest, our final task is to ascertain

how many of these realizations would have caused an

extreme ecological event: in this example, the imposition

of lethal hydrodynamic force. For some processes, we

might need simply to search the realizations for the co-

occurrence of values that individually are sufficiently

extreme, a task that could be handled by multivariate

extreme-value analysis. However, in this bootstrap

approach we are not constrained to such simple

explorations. Instead, we are free to use any mechanistic

model that appropriately combines variables to tell us

whether a given set of conditions will result in an

extreme ecological event. This model can be as complex

as necessary to capture the biologically relevant aspects

of environmental variability; in particular, it can include

FIG. 3. A random time tr is chosen to sample the normalized deviations of various environmental factors. Note that the same
random starting point is used for all factors, thereby retaining any cross-correlation among factors.
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the role of history. Once this model is constructed, we

can ‘‘play’’ each multivariable environmental realization

through it, producing a univariate time series of

biologically meaningful values (hydrodynamic force in

the example here). Examination of the ensemble of these

univariate time series allows us to tabulate extreme

events. The total time in the ensemble divided by the

number of extreme events provides an estimate of the

return time for events of this type. For example, if 17

lethal hydrodynamic incidents occur in 1000 years of

simulated nearshore environment, the return time, the

average time between impositions of such an event, is

1000/17 ¼ 58.8 yr.

In summary, resampling a short time series of relevant

factors provides a large bootstrap ensemble of hypo-

thetical environmental realizations. We then use a

mechanistic model of biological response as a tool to

combine these environmental realizations, allowing us to

analyze the resulting record for the occurrence of

extreme ecological events. Here, we apply our approach

to calculate return times for extreme hydrodynamic and

thermal events on rocky shores, but we can apply the

same methodology to a wide variety of environmental

factors in virtually any ecological system.

MATERIALS AND METHODS

With the exception of the tides, all measurements were

conducted at Hopkins Marine Station (HMS), Pacific

Grove, California, USA (36.628 N, 121.888 W). We

recorded data continuously for 7 yr, from 1 August 1999

through 31 July 2006.

Terrestrial environment

We logged air temperature (Vaisala HMP45C, Camp-

bell Scientific Incorporated, Ogden, Utah, USA; 2 m

above ground), solar irradiance (LI-200SZ, LI-COR

Incoporated, Lincoln, Nebraska, USA; CM3, Kipp and

Zonen, Delft, The Netherlands), and wind speed (Wind

Monitor 05103-5, R. M. Young Company, Traverse

City, Michigan, USA; 3 m above ground) every 10

minutes using Campbell 23X dataloggers (Campbell

Scientific) at two sites at HMS.

The marine environment

We measured significant wave height and peak wave

period (T, the period corresponding to the peak in the

spectrum of wave energy) every 6 hours at a site ;100 m

seaward of Cabrillo Point at HMS using an SBE26

bottom-mounted wave gauge (Sea-Bird Electronics,

Belleview, Washington, USA). These 6-hour measure-

ments were linearly interpolated to give Hs and T

estimates at 10-minute and 1-hour intervals, as appro-

priate (see Appendix A). We measured sea surface

temperature by hand to the nearest 0.18C using an

alcohol thermometer daily at 08:00 hours on Agassiz

Beach at HMS. These daily measurements were linearly

interpolated to give estimates at 10-minute and 1-hour

intervals.

We obtained records of predicted and verified hourly

tidal height from the NOAA tide station at Monterey,

California, ;1.5 km from HMS. When needed, we

linearly interpolated these hourly measurements to give

height estimates at 10-minute intervals.

A model for extreme wave forces

As ocean waves break on shore, they are accompanied

by high water velocities, which in turn impose large

hydrodynamic forces on intertidal organisms (e.g.,

Koehl 1977, Denny 1988, 1995, Carrington 1990,

Gaylord 2000, Boller and Carrington 2006). For a given

organism, the magnitude of these forces depends on four

factors: wave height, wave period, nearshore water

depth (which varies with the tides), and the topography

of the shore. A simple model can be formulated to relate

these four factors to imposed force.

The maximum force, Fmax (in newtons), imposed on

an individual intertidal organism is

Fmax ¼ 0:5qU2
maxACf ð4Þ

where q is the density of seawater (nominally 1025 kg/m3),

A is some representative area exposed to flow, Cf is an

appropriate dimensionless shape-dependent force coeffi-

cient (e.g., the lift, drag, or impingement coefficient), and

Umax (in meters per second) is the maximum velocity

(Denny 1988, 1995, Gaylord 2000). In other words, for an

organism of a given size and shape, maximum force is

proportional to the square of maximum velocity. To

estimate maximum force on mussels (lift in this case), we

set Cf¼0.88 (see Denny 1987). (For simplicity, we ignore

accelerational effects, which for small organisms, such as

mussels, are negligible [Gaylord 2000].)

It is convenient to remove the size of an individual

from this relationship by normalizing force to the same

representative area used in Eq. 4. This manipulation

results in a quantity we refer to as the maximum stress,

Smax, with units of newtons per square meter:

FIG. 4. A schematic diagram of waves breaking on a rocky
shore. H is the height of an individual wave. U is the water
velocity at the crest of the wave;Umay be amplified by the local
topography of the shore. D is the water depth at the toe of the
shore, measured relative to still-water level. D varies with the
tide. Hb, the breaking height limit, is set by wave period and
water depth.
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Smax ¼
Fmax

A
¼ 0:5qU2

maxCf : ð5Þ

Now consider the typical shoreline topography shown in

Fig. 4. As a wave moves inshore, it traverses a sloping

seafloor before impacting upon a steep rock wall. To

estimate the maximum stress imposed on organisms

attached to this wall, we need to estimate the maximum

velocity imparted by waves. Solitary wave theory (Munk

1949) suggests that the maximum water velocity

accompanying a wave as it breaks is the velocity at the

wave’s crest. For a wave moving over the topography

shown in Fig. 4, this crest velocity is approximately

Umax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðHmax þ DÞ

p
ð6Þ

where g is the acceleration due to gravity (9.81 m/s2),

Hmax is the height of the breaking or broken wave (the

vertical height between wave crest and wave trough),

and D, the step depth, is the still-water depth at the base

of the wall (depth measured relative to mean lower low

water [MLLW] and in the absence of waves). Inserting

Eq. 6 into Eq. 5, we see that

Smax ¼ 0:5qgðHmax þ DÞCf : ð7Þ

Thus, maximum stress is proportional to the sum of

maximum wave height and step depth.

Eq. 7 implies that, for a given step depth, stress could

increase without bound as wave height increases.

However, the higher the wave, the lower its stability,

and the farther from shore it breaks (U.S. Army Corps

of Engineers 1984, Denny 1988, Helmuth and Denny

2003). After a wave breaks, it rapidly loses height as

energy is dissipated by turbulence and viscous interac-

tions within the water column, and this energy loss sets

an upper limit Hb to the height of waves as they reach

the wall (Fig. 4). If the height of a wave as it approaches

shore is �Hb, the wave breaks before reaching the wall,

and the maximum stress imposed is as follows:

Smax ¼ 0:5qgðHb þ DÞCf Hmax � Hb: ð8Þ

If the maximum height of the wave as it approaches the

shore is ,Hb, Smax is given by Eq. 7.

To calculate maximum stress for a given step depth,

we thus need to know the maximum height of waves

relative to Hb. A variety of theoretical and empirical

studies suggest that Hb is a function of both D (which is,

in turn, a function of tidal height) and wave period, T.

Here we use the empirical relationship found by the U.S.

Army Corps of Engineers (1984) for steeply sloped

shores:

Hb

D
¼ �0:0561X5 þ 0:4152X4 � 1:2534X3

þ2:0573X2 � 2:2433X þ 2:3432 ð9Þ

where X is 100D/gT2. Eq. 9 is valid for 0 � X � 2. Using

Eq. 9, Hb can be calculated for given values of D and T

(Fig. 5A). For a given step depth, the longer the wave

period, the higher the breaking limit (Fig. 5B). For a

given wave period, the deeper the water, the higher the

breaking limit (Fig. 5C).

Our next task is to decide whether the actual

maximum wave height impinging on the shore exceeds

this breaking limit. In the ocean, wave height varies

randomly from one wave to the next, and the

distribution of wave heights can be characterized by

the significant wave height, Hs. But, as noted previously,

Hs is the average of the highest one-third of waves.

Instead, we desire to know Hmax, the height of the single

highest wave. Theory developed by Longuet-Higgins

(1952, 1980) and outlined in Denny (1995) shows that

Hmax ffi 0:6541 ln
s
T

� �h i1=2

þ 0:2886 ln
s
T

� �h i�1=2
� �

Hs

ð10Þ

where s is the interval over which waves are measured

(in seconds). Thus, if we know the significant wave

FIG. 5. We calculate breaking height according to Eq. 9. (A) The empirical relationship documented by the U.S. Army Corps of
Engineers (1984). The curve shown here is for shores with a relatively steep seafloor leading up to a step at the shoreline,
topography typical of rocky coasts. Because water depth contributes to values on both the abscissa and ordinate, it may be difficult
to interpret panel (A) intuitively. As an aid, values of breaking height Hb are shown in panel (B) for fixed water depth and in panel
(C) for fixed wave period. The wave length of a deep-water wave with period T is gT2/2p (Denny 1988). Thus, the term D/gT2 is an
index of the ratio of water depth to wave length.
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height present in a given interval (e.g., an hour, s¼ 3600

seconds) and T, the dominant period of the waves

present at that time, we can calculate the predicted

height of the highest wave that strikes the shore in that

interval. This maximum wave height can then be

compared to the breaking limit appropriate for that

time (set by the wave period and tidal height, Fig. 5A),

and used in either Eq. 7 or 8 to calculate the maximum

stress imposed on an individual organism.

Note that maximum hydrodynamic stress is not a

monotonic function of wave period. As shown in Fig.

5B, increasing T increases the breaking height, poten-

tially allowing for the imposition of larger stresses. But

increasing T also decreases the number of waves

encountered in any interval of time, which decreases

Hmax (Eq. 10) and, thereby, the stress. The overall effect

depends on step depth D, which in turn depends on the

tide. If step depth is small, waves with any relevant

height break before reaching shore, so Smax is set by Hb,

which increases with increasing period. For sufficiently

deep D, no wave breaks before reaching shore, so Smax is

set by Hmax, which decreases with increasing period. For

intermediate step depths, stress is maximal at some

intermediate wave period.

Eq. 10 is itself based on a probabilistic analysis of

wave–wave superposition similar to the analysis of co-

occurring events presented here. As a consequence, if

several intervals in a time series have the same large (but

not maximal) Hs, the combined time at this sea state

could produce a larger maximum wave height than a

single interval of maximal Hs (see Denny 1995).

However, in practice, this scenario is unlikely. At the

sites explored by Denny (1995), the maximum wave

height associated with maximum Hs is less than the

overall Hmax only for Hs greater than 3.7 to 6.4 times the

yearly average Hs. At HMS, yearly average Hs is 0.88 m,

so we expect maximum wave height at maximum Hs to

be less than the overall Hmax only for Hs . 3.3–5.6 m,

heights greater than those encountered in our 7-yr time

series.

One more detail is required. Often the crest velocity of

a breaking wave is amplified through interactions with

the small-scale topography of the shore. Denny et al.

(2003) demonstrated that wave refraction and the

subsequent formation of jets amplified local velocities

1.5–2.6 fold. Because wave-induced stress increases as

the square of velocity (Eq. 5), these amplifications lead

to a 2.25–6.76 fold increase in stress. In general, if water

velocity is locally amplified by c, the stress predicted by

our simple model is

Smax ¼ 0:5qgc2ðHmax þ DsÞCf Hmax , Hb ð11Þ

Smax ¼ 0:5qgc2ðHb þ DsÞCf Hmax � Hb: ð12Þ

Given concurrent time series for significant wave

height, wave period, and tide level, the procedure

outlined above for calculating Smax for a single

measurement time can be repeated for each measure-

ment in the record, allowing one to estimate the overall

maximum wave-induced stress associated with a partic-

ular realization of the environment at a particular site.

If, by chance, high waves with certain intermediate

periods coincide with a high tide, exceptionally large

stresses are imposed.

Implementing the model

We processed empirical Hs, T, and tidal height data

from HMS to ascertain mean signals and calculate

identically distributed standardized residuals. The time

series of residuals were then resampled as described

previously and combined with the mean annual signals

to create 10 000-year sets of concurrent hypothetical

data.

We analyzed these results in two ways. First, we

tabulated the probability of co-occurring conditions of

wave height, tidal height, and wave period, and second,

we recorded the annual maximum stresses calculated

from the mechanistic model. Annual maxima were then

further analyzed according to Gaines and Denny (1993)

and Coles (2001) to calculate the return time for stress of

a given magnitude: the average time between imposi-

tions of this magnitude of stress. This calculation is

essentially a univariate extreme-value analysis of the

stress data. The 10 000 bootstrapped annual maximum

stresses were ranked, with the smallest annual maximum

having rank 1 and the largest annual maximum having

rank n. The estimated probability that an annual

maximum stress Ŝ chosen at random from the recorded

bootstrap values will have magnitude less than or equal

to the value ranked j is

Prob Ŝ � Ŝð jÞ
� �

¼ PðŜÞ ¼ j

nþ 1
: ð13Þ

This empirical cumulative distribution should asymp-

totically approach a generalized extreme-value distribu-

tion (Gaines and Denny 1993, Coles 2001, Katz et al.

2005):

PðxÞ ¼ exp� a� bx

a� be

	 
1=b

: ð14Þ

We calculated maximum likelihood values for a, b, and e
using Systat (SPSS 1998). Coles (2001) and Katz et al.

(2005) use a modified (but equivalent) form of Eq. 14;

see Appendix B.

The return time R for value x is

RðxÞ ¼ 1

1� PðxÞ : ð15Þ

Return time as calculated here has units equal to the

interval with which measurements are taken. For

example, if maximum stress is measured for annual

intervals, R has units of years.

Eq. 14 is often used in extreme-value analysis to

extrapolate beyond the data in hand, for instance, to
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extrapolate to return times in excess of the period of

actual measurement. Here we use Eq. 14 primarily as a

means to interpolate within the data provided by the

bootstrap ensemble of environmental realizations.

Benchmarks of hydrodynamic stress

We used two benchmarks to judge the extremity of

maximum hydrodynamic stress. The first benchmark is

set by observed events. On 11 January 2001 an extreme

wave/tide event occurred at HMS. Significant wave

height was 2.80 m, wave period was 11.8 s, and tidal

height was 2.15 m above MLLW (National Tidal Data

Epoch [NTDE] 1960–1978, Monterey [NOAA 2000]).

The co-occurrence of these high, intermediate-period

waves with the second highest tide of the year resulted in

substantial damage to the shore. Boulders weighing

several tons were lifted more than 5 m and washed into

the upper intertidal zone, and sections of previously

intact rock substratum were broken loose and widely

scattered. On 5 January 2008 a similar event occurred at

HMS. In this case, significant wave height was 3.12 m,

wave period was approximately 11–12 s (unfortunately,

an apparent malfunction in the wave meter does not

allow us to be more specific), and measured tidal height

was 1.85 m above MLLW (NTDE 1983–2001, Monte-

rey). Although some destruction occurs annually on this

shore, these events were notably exceptional in the

authors’ 26-yr experience at HMS, and we use them as

standards against which to compare our calculations.

The second benchmark is set by the mechanical

capabilities of bed-forming mussels. When water flows

over an intertidal mussel bed, a lift force is applied,

tending to pull individuals away from the substratum

(Denny 1987), and this force is the principal source of

disturbance for mussels living above the limit of

predatory sea stars (Paine and Levin 1981). The ability

of mussels to resist this force was measured at HMS for

a bed of Mytilus californianus 1.5 m above MLLW

(NTDE 1960–1978, Monterey), as described by Denny

et al. (2004). We recorded breaking stress values for 30

mussels each month from February 1999 to October

2006. Monthly values were pooled across years, and

used to estimate the month-by-month cumulative

distribution of breaking stress. We ranked the breaking

stress values for a given month in ascending order, and

used Eq. 13 to calculate the probability that a mussel

chosen at random has a breaking stress less than that of

a given rank. We then fitted this empirical cumulative

probability distribution using Eq. 14, which in turn

allows us to conveniently translate applied stress into the

probability of mussel dislodgment. Note that in this

case, P(Smax), the probability that an individual chosen

at random will be dislodged by stress Smax, approxi-

mates the fraction of the mussel population dislodged by

the imposition of Smax. Knowing both fraction dis-

lodged and return time as functions of applied stress, we

can then plot fraction dislodged directly as a function of

return time. Because the distribution of mussel strengths

varies from month to month, the largest stress does not

necessarily dislodge the largest fraction of mussels; a

smaller-than-maximum stress occurring in a month

when mussels are weak could result in the maximum

annual dislodgment. Consequently, to calculate maxi-

mum annual dislodgement, each individual calculated

hydrodynamic stress value was used with the breaking

stress distribution appropriate to the month in which the

stress was imposed. This is one example of a type of

seasonal effect that would complicate a traditional

multivariate analysis of extremes.

A model for limpet body temperature

We used a similar approach to predict the return time

of extreme thermal events for limpets. The owl limpet

Lottia gigantea is territorial; it maintains a ‘‘garden’’ of

microalgae by bulldozing away mussels, barnacles, and

other limpets, and returns to a home scar at each low

tide. When firmly attached to its scar, L. gigantea is

virtually immune to dislodgment by wave forces (Denny

and Blanchette 2000). At HMS, L. gigantea is the only

species that can effectively compete for mid-intertidal

space with M. californianus, and therefore is an

important influence on mid-intertidal community struc-

ture. Because of its homing behavior, adult L. gigantea

are effectively immobile at low tide; they do not seek

shelter on hot days, and are thus susceptible to

overheating.

Denny and Harley (2006) constructed a heat budget

model that predicts (within 0.38C) the body temperature

of L. gigantea from environmental data, and we use this

model here. Briefly, we use the model to calculate the

rate at which heat enters and leaves a limpet’s body for a

given set of environmental values, and then calculate the

body temperature at which heat influx equals heat efflux.

For small organisms such as these limpets, this

equilibrium temperature is an excellent estimate of

actual body temperature. The heat budget model thus

provides a means for translating a time series of

environmental variables into the corresponding time

series of body temperatures.

We resampled pertinent aspects of the 7-yr environ-

mental record (air and seawater temperatures, wind

speed, solar irradiance, tidal height, and significant wave

height) as described above and in Appendix A, and we

used them in conjunction with the heat budget model to

calculate 1000 hypothetical annual maximum body

temperatures for L. gigantea at nine substratum

orientations: horizontal; 458 from vertical facing east,

west, north and south; vertical facing east, west, north,

and south. We assume that all limpets occur at 1.5 m

above MLLW, a typical height on the shore for L.

gigantea at HMS. We then used Eqs. 13, 14, and 15 to

calculate the return time for given maximum body

temperatures. The calculation of each 1000-year ensem-

ble required .5 days of computer time; for this reason

we use only 1000 years of hypothetical thermal data
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rather than the 10 000 years of wave/tide data we used

when exploring mussel dislodgment.

Two aspects of the heat budget model deserve note.

First, instantaneous body temperature is closely tied to

the temperature gradient in the rock substratum, and

therefore depends on the history of heat flux in the

several hours leading up to each temperature measure-

ment. Second, the values of wind speed, wave height,

and solar irradiance relevant to body temperature are

bounded. During times of thermal stress, body temper-

ature is typically higher than air temperature. As a

result, the lower the wind speed, the higher the body

temperature. However, wind speed can never go below

0, and convection imposes a practical lower bound of

;0.1 m/s. Similarly, body temperature can be high only

in the absence of wave splash. Thus, the lower the wave

height, the higher body temperature is likely to be.

However, wave height can never fall below 0. The

brighter the sunlight, the higher body temperature can

be, but irradiance at sea level is limited by the output of

the sun to ;1000 W/m2. Slightly higher values can be

encountered for a few moments at a time as direct sun-

light is augmented by light reflected off clouds, but these

brief bright spells do not last long enough to substan-

tially affect body temperature. The fact that these vari-

ables are bounded will be important when we consider

the calculation of absolute maximum body temperature.

To aid in interpreting thermal data, we carried out an

additional set of calculations to characterize the

temporal pattern of heating corresponding to the

imposition of maximal temperatures for limpets on

horizontal substrata. We created 184 yr of resampled

environmental data, and (using our heat budget model)

recorded the body temperatures every 10 min within

612 h of the annual maximum for each year. These

records allowed us to characterize each annual maxi-

mum temperature event into two categories: (1) abrupt

cooling, in which the hot limpet was immersed in

seawater within 20 min of reaching peak temperature,

(2) gradual cooling, in which high temperature was

maintained for longer periods.

Benchmarks of thermal stress

We use death as a benchmark for the severity of

thermal stress. To do so, we measured the distribution of

lethal limits of L. gigantea as described by Denny et al.

(2006). In short, we gently detached limpets from the

substratum and transferred them to a chamber in the

laboratory in which substratum temperature, air tem-

perature, wind speed, and relative humidity were varied

separately to impose patterns of body heating that

resemble those found in limpets emersed at low tide.

Two heating protocols were used. First, starting at a

typical seawater temperature of 148C, we increased body

temperature at a rate of 88C per hour to the

experimental temperature. (This rate is among the

highest seen in our simulations.) We maintained this

peak temperature until 3.5 h had elapsed from the

initiation of the experiment, at which time the limpets

were abruptly cooled by immersion in 148C seawater.

We assessed the status of the limpet (alive or dead) 24 h

after immersion. The second protocol was similar to the

first except that, after an appropriate interval at

experimental temperature, we gradually cooled the

limpets at 88C per hour back to 148C (rather than the

abrupt decrease of the first protocol), and the limpet was

then immersed in 148C seawater. In this case, the total

time of the experiment (from initial onset of heating to

immersion) was 7 h. We then assayed limpet status 24 h

later. Experimental peak temperatures were varied from

288C to 408C in 18–28C steps. For the 3.5-h exposures,

we used 10 limpets in each trial at each temperature; for

the 7-h exposures, we used 5 limpets in each trial. All

experiments were repeated for three trials. Wind speed

was 0.5 m/s and relative humidity was 50–60% in each

trial. Air temperature tracked substratum temperature

up to 308C, and was then held constant.

The results of these experiments suggest that 288C

represents an approximate threshold for thermal death

in L. gigantea. At or below 288C, limpets can survive the

longest single exposure they are ever likely to encounter

in nature. Above this threshold, limpets are killed, the

fraction killed increasing with both temperature and

time of exposure. The limit of 288C is also the

temperature at which L. gigantea increases its produc-

tion of heat-shock proteins (HSP 70) (Miller et al. 2009).

For future reference, note that the ‘‘abrupt cooling’’

experiments maintain a body temperature .288C for

1.75 h; the ‘‘gradual cooling’’ experiments, for 3.5 h.

We use the lethal limits measured here to calculate

return times of thermal events in terms of the fraction of

limpets killed rather than in terms of limpet body

temperature.

Verification

It would be comforting to test our calculations against

long-term empirical measurements. However, as with

many predictions of rare environmental events, a direct

test is problematic: long-term records of mussel dislodg-

ment and limpet thermal death do not exist for the HMS

shore. In lieu of these data, we tested our method in

three ways.

First, we tested the ability of our method of

calculating residuals (Appendix A) to accurately esti-

mate the distribution of residuals. We took daily sea

surface temperatures at Hopkins Marine Station from a

record beginning in January 1919 and extending through

2004 (Breaker et al. 2006), allowing us to calculate

residuals relative to the 86-yr average for each year day.

We then compared the distribution of these residuals to

the distribution of residuals calculated relative to the

annual cycle of temperature estimated using our 7-yr

data record and the averaging procedure outlined in

Appendix A.

Next, we tested the internal accuracy of the statistical

approach using simulated environmental data. We used
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second-order autoregressive-moving-average (ARMA)
models to calculate 10 000-yr-long simulated time series
of standardized residuals for tidal heights, wave heights,
and wave periods (see Appendix C). When combined

with the mean annual cycles measured from our 7-yr
record, these time series of residuals provide the sort of
lengthy data set not currently available from nature. A

7-yr segment of this hypothetical environmental record
was then chosen at random and analyzed using our
resampling method to estimate return times for extreme

events. These calculations allowed us to compare the
distribution of estimated return times (calculated from
the 7-yr subseries) to the distribution of return times

directly ‘‘observed’’ in the 10 000 years of the full-length
simulated time series.
As a final means of testing the efficacy of our

predictions for extreme events, we garnered hourly
significant wave height and peak wave period from
buoy 46042 of the National Data Buoy Center, located

at 36.758 N, 122.428 W in the mouth of Monterey Bay,
;50 km from Hopkins Marine Station. With minor
intermittent gaps, this record spans 20.5 yr, from 17

June 1987 to 31 January 2008, a total of 160 584 h of
observation. We noted conditions at this buoy for the
times of the known extreme events at HMS. We then

searched the 20.5-yr record for the occurrence of similar
events, and noted the intervals between these events.

RESULTS

Verification

Thermal residuals calculated using our averaging
procedure are very similar to residuals calculated
relative to the 86-yr average for each year day (Fig. 6).

Applying our statistical method to short-term (7-yr)
simulated wave and tide data predicted a distribution of
return times for hydrodynamic stress that closely

matches the distribution observed directly in long-term

(10 000-year) simulated data. On average, the estimates
of annual maximum stress for a given return time
overestimated the observed stress by 0.49% (Fig. 7). The

fractional difference between estimated and actual stress
generally decreased with increasing return time, and the

maximum difference between predicted and actual stress
was �3.62% at a return time of 5000 yr.

Wave events with individual characteristics as extreme
as those observed on 11 January 2001 (Hs . 2.80 m, T .

11.8 s, tidal height. 2.15m) occurred in only 1.07% of the
10 000 1-yr realizations of the wave and tide environment,

corresponding to a return time of ;93 yr. Wave events
with individual characteristics as extreme as those

FIG. 6. The cumulative probability distribution of sea surface temperature residuals estimated from a short (7-yr) data set
closely matches deviations calculated directly from an 86-yr data set. Panel (B) shows details of the upper tail of panel (A). Open
circles are data from the short times series; solid circles are data from the 86-yr series.

FIG. 7. Results from simulated wave/tide data. Extreme
values estimated from a 7-yr subset of the simulated data set are
compared to those ‘‘observed’’ in the entire 10 000 years of
simulated data. Fractional difference is ([estimated value �
observed value]/observed value). Estimated values are slightly
larger than observed values for return times less than ;200 yr
and are slightly smaller than observed values at longer return
times. There are 10 000 data points in this plot, and they are not
distributed evenly in log time. The large number of points at
short return times controls the average fractional difference,
which is þ0.49%.
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observed on 5 January 2008 (Hs . 3.12 m, T . 11 s, tidal

height . 1.85 m) occurred in 1.86% of the 10 000 1-yr

realizations, corresponding to a return time of 54 yr.

These return times can be compared to those estimated

from buoy records. The 2001 extreme wave event at

Hopkins Marine Station occurred when conditions at

buoy 46042 were Hs ¼ 8.2 m, T ¼ 16.7 s. In the 20.5-yr

history from this buoy, this was the only time when Hs �
8 m and T � 16.7 coincided with a measured tidal height

.2.0 m. The 2008 extreme wave event at Hopkins

Marine Station occurred when conditions at buoy 46042

wereHs¼9.9 m, T¼17.0 s, the only time whenHs � 9 m

and T � 17 coincided with a measured tidal height .1.85

m. If we use these two events as the benchmark for what

constitutes an extreme wave/tide event, the buoy record

implies return times for such events of .13.5 yr (from

some undetermined time prior to June 1987 to January

2001) and 7 yr (January 2001 to January 2008).

Extreme stress events

As noted above, the combinations of wave height,

wave period, and tidal height present in January 2001

and 2008 are only a subset of the possible conditions

that might qualify as biologically extreme. Return time

as a function of calculated imposed stress is shown in

Fig. 8. Our simple model for wave stress suggests that

stress equivalent to that imposed on 11 January 2001 has

a return time of approximately 28 yr, and stress

equivalent to that of 5 January 2008 has a return time

of 47 yr. As expected, both values are lower than the

return times estimated for specific combinations of

waves and tides (93 and 54 yr, respectively).

Mussel strength distributions

Fig. 9 shows the cumulative distributions of mussel

breaking stress. Tenacities are higher from October

through February, with a peak in November, and lower

in March through September, with a minimum in April.

Monthly distributions of mussel breaking stress are

described by the coefficients given in Table 2.

Fraction of mussels dislodged

The fraction of mussels dislodged by hydrodynamic

forces is graphed as a function of return time in Fig. 10.

Values are shown for three levels of velocity amplifica-

tion (c¼1, 1.5, 2.6) and for two water depths (D¼1 and

5 m measured from MLLW), spanning the typical range

for rocky shores. Without local amplification, wave-

imposed stresses dislodge a miniscule fraction of the

population even at long return times, regardless of water

depth. With a 2.6-fold amplification of velocity, .80%

of mussels are dislodged annually at D¼ 1 m, and .99%

at D¼ 5 m. With intermediate velocity amplification, the

fraction of mussels dislodged increases with both return

time and water depth. There was negligible effect of

varying block size (Fig. 11).

Fig. 12 shows the distribution of times of arrival of

yearly maximum wave stress; maximal stress arrives

most often in December when mussels are near their

strongest, and least often in July and August when

mussels are near their weakest. This correlation between

imposed stress and byssal strength suggests that mussels

may adjust their adhesive tenacity in response to the

hydrodynamic environment.

Limpet thermal limits

The fraction of limpets killed by temperature / is

shown in Fig. 13, where the data are described by the

following equations:

Fraction killed ¼ 1

1þ exp �/� 32:85

0:7978

	 
 ð16Þ

for gradual cooling, and

Fraction killed ¼ 1

1þ exp �/� 36:73

0:3863

	 
 ð17Þ

for abrupt cooling. (Eq. 16 is taken from Denny et al.

[2006].) A temperature of ;378C is required to kill half

the limpets when individuals are exposed to potentially

lethal temperatures (temperatures above 288C) for 1.75

h. In contrast, a temperature of only ;338C is required

to kill half the limpets when exposed to potentially lethal

temperatures for 3.5 h.

Pattern of heating

Of the annual temperature maxima, 69% were

associated with gradual cooling to seawater tempera-

ture; the remaining 31% were associated with abrupt

cooling. Average patterns of heating are shown in Fig.

14. The higher the annual maximum body temperature,

the longer the time spent above the threshold of 288C,

although there is substantial variation around this

pattern (Fig. 15). As one might expect, time above

FIG. 8. Hydrodynamic stress values calculated for the
January 2001 and 2008 extreme events correspond to return
times of ;28 and 47 yr, respectively.
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threshold is greater for gradual returns to seawater

temperature than for abrupt returns.

Extreme thermal events

Table 3 presents a summary of the results of the heat

budget model, and Fig. 16 shows annual maximum body

temperatures as a function of return time and substra-

tum orientation. Of the orientations tested, temperature

reaches its maximum average on the south-facing

surface with a slope of 458 (Fig. 16A). This angle is

near the latitude of HMS (368), thus placing the

substratum nearly perpendicular to the midday sun.

Temperatures on a horizontal surface are similar to

temperatures reached on an east-facing 458 surface.

Temperatures on vertical surfaces follow the same

pattern with orientation as substrata sloped at 458, but

are slightly cooler (Fig. 16B).

Return times for death of given fractions of limpets

are shown in Fig. 17. For the worst case of our spatial

scenarios (a south-facing 458 surface), if a given

maximum body temperature is associated with an

abrupt cooling to seawater temperature, half the

population would be killed with a return time of ;8.1

yr (Fig. 17A). If, however, a given maximum body

temperature is associated with a gradual return to

seawater temperature, half the population would be

killed with a return time of only ;1.6 yr (Fig. 17B). In

contrast, if the 458 surface faces north and a given

maximum body temperature is associated with a gradual

return to seawater temperature, temperatures sufficient

to kill half the population occur only every 209 yr (Fig.

17B). Return times are longer regardless of substratum

orientation if cooling is abrupt (Fig. 17A, C) than if

cooling is gradual (Fig. 17B, D). There was a slight

effect on our calculations of varying block size, but no

apparent pattern to the effect (Fig. 18): results using a

FIG. 9. Month-specific cumulative probability distributions for Mytilus californianus at Hopkins Marine Station in relation to
tenacity. Coefficients describing these curves are given in Table 2.

TABLE 2. Coefficients describing the cumulative probability
distribution of mussel strength (see Eq. 14).

Month a b e

January 0.0444 0.0688 0.1131
February 0.0475 0.0622 0.1068
March 0.0430 0.0469 0.0966
April 0.0552 0.1561 0.0934
May 0.0528 0.1607 0.0970
June 0.0516 0.1410 0.1030
July 0.0606 0.1980 0.1019
August 0.0576 0.2111 0.0907
September 0.0422 0.0651 0.0991
October 0.0609 0.1792 0.1068
November 0.0598 0.1553 0.1169
December 0.0672 0.2204 0.1128

Note: Values are used in Eq. 3, with x, the applied stress,
measured in MPa.
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block length of 39 days were very similar to those using

the standard length of 13 days.

DISCUSSION

Our results suggest that the co-occurrence of normal

environmental factors can lead to extreme events, and

that these environmental extremes can cause severe

disturbance. For example, the average yearly maximum

body temperature of L. gigantea on horizontal surfaces

is 30.48C, sufficient to kill ,5% of individuals (Table 3).

However, on one occasion in our 1000 simulated years,

normal air temperatures, tidal levels, solar irradiances,

and wind speeds aligned to produce an estimated body

temperature of 40.18C, sufficient to kill .99% of limpets

at this orientation, an event that would open substantial

primary space for invasion or settlement. Similar effects

occur at most other substratum orientations, north-

facing walls being the only reliable refuge from thermal

disasters (Table 3). It is important to note that the

environmental event chronicled here for limpets on a

horizontal surface, a shift from benign to lethal, is a

consequence of chance alone: in the year that produced

the exceptional body temperature of 40.18C, the mean

values of air temperature, tidal level, solar irradiance,

and wind speed were exactly the same as in all other

years. By calculating the probability of rare events of

this sort (a 1-in-1000-yr occurrence), our resampling

method provides information about thermal dangers

FIG. 10. The proportion of mussels dislodged over time. The longer one waits, the larger the fraction of mussels dislodged, but
the increase is relatively small. (Return times are in years.) Data are shown for water depths of (A) D¼ 1 m and (B) 5 m, and for
velocity amplification c varying from 1 to 2.6.

FIG. 11. Varying the length of segments in the bootstrap resampling has little effect on predicted mussel dislodgment. (Return
times are in years.) Data shown here are for D¼ 5 m and a velocity amplification of 1.5. The time periods shown in the key are the
segment lengths (of standardized residuals) used in the bootstrap resampling procedure.
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that would be difficult, if not impossible, to obtain
through short-term observations.

Our results also provide details regarding the spatial

patterns of environmental factors that would be difficult

to obtain otherwise. For example, casual observation at

HMS shows that L. gigantea are relatively scarce on

south- and west-facing substrata. Denny and Harley
(2006) have shown that in typical years maximum body

temperature is highest for these orientations, but not

sufficiently high to kill L. gigantea. Why, then, are

limpets scarce at these orientations? A potential
explanation becomes apparent only when rare, extreme

thermal events are considered. We predict that events

capable of killing owl limpets occur much more

frequently on south- and west-facing slopes than on

north- or east-facing slopes (Fig. 17). Perhaps it is these
rare events, events that would be unlikely for an

ecologist to observe, that control limpets’ distribution.

The pattern of disturbance is different for M. califor-

nianus subjected to hydrodynamic forces. At any partic-

ular site on the shore, temporal variation in applied stress
spans only a small fraction of the broad range of mussel

attachment strengths.Mussels at relatively protected sites

on the shore (sites with a velocity amplification¼ 1) are

exceedingly unlikely to be dislodged by even a once-in-

10 000-yr wave/tide event (Fig. 10). Mussels at highly
exposed sites (c ¼ 2.6) are unlikely to survive even the

‘‘normal’’wave events that occur every year. For siteswith

intermediate velocity amplification (c ¼ 1.5), extreme

wave events can indeed increase the fraction of mussels
dislodged, but only within a narrow range. Thus, for

mussels, physics (in the form of wave breaking) limits the

range of environmental extremes possible at a given site,

which, when coupled with the broad distribution of

breaking stress in mussels (Fig. 9), in turn limits the range
of possible ecological consequences. In contrast to

limpets, for which the intensity of thermal disturbance

canvarydrastically in both space and time, the intensity of

hydrodynamic disturbance for mussels can vary drasti-

cally fromplace toplace on a shore, but disturbance at any

given location is unlikely to vary as drastically through

time.

What if ?

The resampling method employed here allows us to

answer a variety of ‘‘what if ?’’ questions. In central

California, where this study was conducted, summertime

low tides typically occur early in the morning, while in

Oregon and Washington, they can occur near midday,

leading to the proposal that intertidal organisms are

subjected to greater thermal stress at higher latitudes

(reviewed in Helmuth et al. 2002, 2006). We can test one

aspect of this hypothesis by running our model using the

empirically measured air temperature, solar irradiance,

wind speed, and sea surface temperature at HMS

combined with tidal fluctuations that are shifted to later

in the day (Fig. 19). A 3-h shift in the tides (simulating a

FIG. 12. Annual maximum mussel dislodgment occurs most often in December and least often in July and August. Results for
water depths of D ¼ 1 and 5 m are similar. Month 1 is January.

FIG. 13. Thermal limits for the limpet Lottia gigantea. Data
are shown for two heating regimes: abrupt cooling (in which
temperature is elevated for 3.5 h, 1.75 h at .288C) and gradual
cooling (in which temperature is elevated for 7 h, 3.5 h at
.288C). Error bars represent 6SE.

August 2009 411PREDICTION OF EXTREME ECOLOGICAL EVENTS



northward shift from California to Washington State)

decreases the predicted return time of 50% thermal death

from 8.8 to 6.2 yr, a surprisingly small shift. This finding
reinforces the conclusion of Helmuth et al. (2002) that

there may be little effective latitudinal variation in

intertidal body temperatures.

What if air temperature were to rise, say, 28C from

those values measured at HMS? Increasing air temper-
ature reduces the return time of lethal thermal events,

but in a pattern that depends on orientation (Fig. 20).

Only minor effects are predicted for south-facing 458

slopes (Fig. 20A) and north-facing vertical walls (Fig.
20B). In contrast, on horizontal surfaces, an increase in

air temperature of 28C would have substantial effect,

reducing the return time for an event killing 50% of

limpets from 9 to 2 yr (Fig. 20C). An increase in air
temperature could thus affect the spatial distribution of

limpets, and thereby the surrounding community.

Note that the uniform increase of air temperature used

to calculate these results is at best a first approximation
of the effect of increased average air temperature at

HMS. If average air temperature rises as a part of global

climate change, the effect is likely to vary with time of

day and time of year. Furthermore, any shift in average

air temperature is likely to be accompanied by other

changes in the thermal environment. Increased air

temperature in the inland valleys east of HMS is likely

to increase the incidence and speed of onshore winds,

FIG. 14. Average patterns of heating and cooling observed for 184 yr of resampled environmental data: (A) gradual cooling and
(B) abrupt cooling. Vertical bars indicate 6SD.

FIG. 15. Hours of exposure to potentially lethal tempera-
tures (.288C) for 184 yr of resampled environmental data. Key:
solid symbols, gradual cooling; open symbols, abrupt cooling.
Lines are least-squares regressions: gradual cooling, hours ¼
1.213 þ 0.573 3 degrees (r2 ¼ 0.593, n ¼ 127); abrupt cooling,
hours¼ 0.302þ 0.333 3 degrees (r2¼ 0.553, n ¼ 57).
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resulting in an increase in fog at the coast and a

concomitant decrease in solar irradiance. Thus, in reality

an increase in air temperature might actually result in a

decrease in intertidal body temperature. Although these

complications are not included here, if the change in

solar irradiance (or any other factor that might vary with

air temperature) can be predicted, its incorporation into

our method is straightforward.

Return time: nonintuitive consequence

In the discussion above, we quantified the temporal

pattern of extreme events in terms of the return time. As

with many averages, return time must be interpreted

with care, and it is worth taking a few moments to

consider return time in detail.

If, in the absence of any long-term shift in the

environment, the stochastic components of environmen-

tal factors combine randomly through time, we can

suppose that compound extreme events occur with

constant, small probability. If this is indeed the case,

the intervals between extreme events in a static climate

should conform to a Poisson interval distribution (for a

derivation, see Berg [1983:87]):

pðt; RÞdt ¼ e�ðt=RÞ

R
dt

Probðx � tÞ ¼ PðxÞ ¼ 1� e�ðt=RÞ:

ð18Þ

Here, p(t; R) is probability density for a given interval

length t given return time R, and P(x) is the probability

that the actual interval between events is �t. Eq. 18 is

graphed in Fig. 21. Indeed, the distribution of inter-

event intervals predicted by our method is accurately

modeled by the Poisson interval distribution; an

example is shown in Fig. 22.

Note that the Poisson interval distribution is highly

skewed, with an abundance of short intervals and a few

very long intervals (Fig. 21). This skew can lead to

nonintuitive biological consequences. We use two hypo-

thetical examples to demonstrate our point. Let N(x) be

the probability of not encountering in any particular year

an extreme event of magnitude x. If N(x) is constant, the

probability of not encountering an extreme of magnitude

x in a lifetime of L yr is NL(x). In other words, measured

over many generations, NL(x) is the average fraction of

the population that avoids extreme event of magnitude x.

An example is shown by the solid line in Fig. 23 where we

TABLE 3. Mean and maximum predicted body temperatures and the estimated fraction of limpets killed, as a function of
substratum orientation and ‘‘gradual’’ or ‘‘abrupt’’ cooling regimes.

Orientation Mean (8C)

Fraction of limpets killed

Maximum (8C)

Fraction of limpets killed

Abrupt
cooling

Gradual
cooling

Abrupt
cooling

Gradual
cooling

Horizontal 30.36 0.0000 0.0422 40.11 0.9998 0.9999
North 458 26.01 0.0000 0.0002 36.73 0.5000 0.9923
East 458 30.30 0.0000 0.0393 38.03 0.9666 0.9985
South 458 33.77 0.0005 0.7601 42.99 .0.9999 .0.9999
West 458 32.06 0.0000 0.2709 40.84 .0.9999 .0.9999
North vertical 22.43 0.0000 0.0000 32.47 0.0000 0.3831
East vertical 28.47 0.0000 0.0041 34.69 0.0051 0.9094
South vertical 31.66 0.0000 0.1837 43.08 .0.9999 .0.9999
West vertical 30.83 0.0000 0.7365 38.18 0.9771 0.9987

FIG. 16. Annual maximum body temperature as a function
of return time for substrata of various orientations. (Return
times are in years.) Angled substrata were inclined 458 to
horizontal.
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assume that N(x)¼ 0.95, corresponding to a return time

of 20 yr (Eq. 15). Because extreme events occur ran-

domly, there are instances in which the interval between

events is exceptionally long (the tail on the right side of

Fig. 21B). As a consequence, even if individuals have a

lifetime equal to the return time, in the long term, 36% of

these individuals never encounter a catastrophic event.

Contrast this scenario with another in which extreme

events arrive periodically with a fixed interval Rper. In

this case, individuals born within Rper � L yr immedi-

ately after an extreme event die blissfully of old age

before the next catastrophe occurs. The fraction of

individuals avoiding extreme events is (Rper� L)/Rper; it

decreases linearly with increasing life span. This scenario

is also depicted in Fig. 23 (the dashed line), where we

have assumed that Rper (like R) is 20 yr. More

individuals survive if extreme events arrive randomly

than if they arrive periodically.

The average fraction of a population that encounters

an extreme is only one index of an extreme’s effect on a

population, however. What is the effect of extreme

disturbance on the average population size? To address

this question, we consider a hypothetical population

growing according to the logistic equation (see Appen-

dix D). The population is subjected to extreme events

that arrive either at random or periodically at intervals

equal to the return time. If disturbances arrive randomly

in time, they may by chance be applied in quick

succession. This sort of ‘‘double whammy’’ reduces

population size to a level from which it can only slowly

recover, and as a result, population size (averaged over

10 000 intervals) is smaller than if disturbance is applied

periodically at the average rate (Fig. 24). The disparity

FIG. 17. Annual maximum fraction of limpets killed as a function of return time (in years) and heating regime (abrupt cooling
vs. gradual cooling) for substrata of various orientations. Angled substrata were inclined 458 to horizontal.

MARK W. DENNY ET AL.414 Ecological Monographs
Vol. 79, No. 3



of consequences between random and periodic events is

small for small disturbance intensities, but large if

disturbances are drastic. Examples of a similar effect

have been noted in nature: Paine et al. (1998) show that

two extreme events occurring in unusually quick

succession can result in ecological surprises that would

not accrue if the same events were repeated at longer or

more consistent intervals. In summary, the skewed shape

of the Poisson interval distribution of extreme events

can lead to nonintuitive biological consequences.

In addition to providing insight into the interpretation

of return time, Eq. 18 can be used to evaluate our

method’s ability to predict return times. For extreme

wave/tide events with individual variables similar to

those of January 2008, we predict a return time of ;54

yr, while the sole observed interval between events of

similar magnitude was a mere 7 yr. However, even given

a return time of 54 yr, the skew of the Poisson interval

distribution is such that 12.2% of intervals are �7 yr.

Thus, although our estimated return time seems high, we

cannot reject (at the traditional 5% level) the hypothesis

that our prediction is consistent with our single

measured return interval.

In the same fashion, Eq. 18 can help us discriminate

between extreme events that are due to chance alone in a

constant climate and those that are due to shifts in climate

itself. For example, if two extreme thermal events were

imposed on limpets in quick succession, it might be

tempting to attribute the occurrence to global warming.

Because our method allows us to estimate the expected

return time of such events in the absence of climate

change, we can use Eq. 18 to test the validity of such an

assertion. Unless there is a very low likelihood that back-

to-back events occurred by chance alone, it would be

inappropriate to invoke climate change as the definitive

cause. Thus, our ability to legitimately resample a short

time series of environmental factors can serve as a useful

tool for discerning effects of long-term climate shifts.

Predictions vs. forecasts

It is important to distinguish the predictions made

here from forecasts of what will happen in the future.

Our method estimates how often, on average, a given

extreme event would occur if one particular year could

be repeated 1000 or 10 000 times. For example, we

predict maximum hydrodynamic stress using the same

FIG. 18. The effects of varying segment length on the predicted fraction of limpets killed. Data are for limpets on a horizontal
surface 1.5 m above MLLW (mean lower low water). (Return times are in years.)

FIG. 19. Shifting the tidal cycle to later in the day increases
the fraction of limpets killed by thermal stress. (Return times
are in years.) The tide is shifted to later times by 1, 2, and 3,
hours. Calculations presented here are for limpets on horizontal
substrata 1.5 m above MLLW.

August 2009 415PREDICTION OF EXTREME ECOLOGICAL EVENTS



annual pattern of tidal variation again and again. But

we know that in reality tidal fluctuations vary from year

to year, e.g., the lunar declination varies with a period of

18.6 yr, affecting the amplitude and timing of the highest

predicted tides (e.g., Denny and Paine 1998). Thus, even

if all other aspects of the environment remain the same

as recorded by our 7-yr time series, the actual pattern of

extreme wave events in the future will vary somewhat

from the predictions made here due to the changing

pattern of the tides.

This limitation can easily be overcome. Because long-

term fluctuations in tides are accurately predictable from

celestial mechanics, we could extend our method to take

future fluctuations into account, combining our nor-

malized tidal deviations with predicted celestial tides for

the duration of the forecast. Predicted future variation

in other factors can be incorporated in similar fashion.

We need better physiological models

The predictions made here of dislodgement and

thermal death are only as good as the empirical data

on which they are based, and these data have limitations.

For example, our calculations of mussel breaking stress

do not incorporate any intermussel influence. In mussel

beds, once one mussel is dislodged, others nearby may be

weakened, leading to the formation of local patches of

disturbance, and overall greater disturbance than we

have estimated. Similarly, it is currently unclear how

FIG. 20. The effect of a 28C increase in air temperature
depends on the orientation of the substratum. There is little
effect for limpets on (A) south-facing, 458 substrata or (B)
north-facing vertical substrata, but there is a substantial effect
for (C) limpets on horizontal surfaces. In each panel, the solid
line indicates mortality for the base air temperature, and the
dotted line represents that for a 28C increase in air temperature.

FIG. 21. The Poisson interval distribution. (A) The fraction
of intervals less than or equal to a given value; values are
measured in units of the return time. For example, 63% of
intervals have lengths less than of equal to the return time. (B)
The probability density function for the Poisson interval
distribution. The probability of encountering an interval of a
given length is greatest for intervals of short duration.
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velocity amplification c typically varies along a shore,

and therefore how it contributes to patch formation.

Further research is needed to elucidate these potential

effects. More problematic is our current level of phys-

iological insight. Our estimates of disturbance (both

hydrodynamic and thermal) depend strongly on empir-

ical measurements of physiology, and existing mea-

surements are, at best, preliminary. For example, our

measurements of the attachment strength of M. califor-

nianus are by far the most complete of any to date.

Several thousand mussels were dislodged in the course of

7 yr to estimate the month-by-month distribution of

breaking stress. However, we assume that it is the single,

largest wave-induced stress that dislodges mussels. It is

possible that repeated submaximal stresses may have the

same effect. In addition, there is some evidence in our

data (E. Carrington andM.W. Denny, unpublished data)

that attachment strength at one time is correlated with

average wave stress in the week prior to measurement,

FIG. 22. Cumulative probability of predicted intervals
between mussel dislodgment events matches the predictions of
the Poisson interval distribution. The 10 000-year random
realizations of hydrodynamic stress were concatenated to
simulate a long times series, and the intervals between events
of a given severity were noted. Circles are data for D ¼ 5 m,
velocity amplification ¼ 1.5, and stress events sufficient to
dislodge 41.6% of mussels. These events have an observed
return time of 10.05 yr. The solid line is the cumulative Poisson
interval distribution (Eq. 18) calculated for a return time of
10.05 yr.

FIG. 23. Results from a hypothetical population. If lethal events arrived randomly (with a probability of 0.05/yr) rather than at
a fixed interval of 20 yr, an increased fraction of the population avoids being killed before dying of old age.

FIG. 24. The effect of extreme events on the average size of
a hypothetical population undergoing logistic growth. We
subjected the population to occasional extreme events such that
the size of the population after the event is 1/E of the size of the
population before the event, where E is a disturbance intensity
factor. Average population size is smaller when subjected to
events that arrive at random than when the population is
subjected to events that arrive periodically. Population size
shown here is averaged over a length of time sufficient to
contain ;500 extreme events. Error bars represent 6SD.
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and there is evidence that the susceptibility of mussels to

dislodgment varies with time since they were last

disturbed (Paine 2002). This sort of temporal autocor-

relation in breaking stress has not been well character-

ized, however, and is not included in our calculations.

Clearly, the more accurate our understanding of the

physiological basis for mussel attachment strength, the

more accurate our calculations of extreme events. In

effect, what we need is a mechanistic model of the entire

physiology underlying adhesive tenacity. Such a model

would allow us to interpret any time series of applied

stresses in terms of its biological consequences.

Our understanding of the thermal tolerances of limpets

is even more limited. We measured thermal tolerances on

relatively few individuals for only two heating regimes,

and did not measure tolerance as a function of season.

Other intertidal species exhibit seasonal variation in the

physiology of thermal tolerance (Roberts et al. 1997,

Halpin et al. 2002, Sagarin and Somero 2006), and it is

possible that L. gigantea can adjust its thermal tolerance

in ways that we have not taken into account. And, as

with mussels, we have assumed that it is maximum stress

that kills limpets. It is possible that lengthy or repeated

submaximal temperatures can have the same effect.

Furthermore, our calculations do not take into account

variations in shell shape among limpets (which can affect

the transfer of heat by convection, and thereby, body

temperature), the effects of microhabitat shading on

realistic substrata, and the fact that some actual ex-

posures to high body temperatures last for longer periods

than those used in our laboratory experiments (Fig. 15).

Until more is known about the mechanism(s) of thermal

death in limpets, these potential effects cannot be

incorporated into our calculations. Again, what we need

is a detailed mechanistic model, in this case of limpet

thermal physiology.

And finally, if we are to fully address the ecological

effects of extreme events, it would be advantageous to

incorporate all possible types of extremes. For example,

as we have noted, L. gigantea is immune to hydrody-

namic dislodgment when stationary. However, the

limpet is highly susceptible when actively foraging

(Denny and Blanchette 2000). Given sufficient informa-

tion regarding limpet foraging behavior, we could

predict return times of limpets’ extreme hydrodynamic

events for comparison with those of mussels, but this

behavioral data is currently unavailable. Similarly, given

an accurate model for mussel thermal physiology, we

could predict the return times of thermal death for

mussels for comparison with those of limpets. Helmuth

(1998) formulated a heat budget model for M. califor-

nianus, but the thermal limits of this species have not

been measured.

Our intent in noting these caveats is not to denigrate

our findings, which, although not perfect, are by far the

best available. Instead, our intent is to raise awareness of

the need for, and the utility of, greater interaction

among physiologists, ecologists, and evolutionary biol-

ogists. This interaction may be facilitated by recent

advances: the genome of L. gigantea is currently being

sequenced and annotated.

PLATE 1. Large waves breaking on rocky shores can impose severe hydrodynamic forces. Photo credit: C. D. G. Harley, taken
at Hopkins Marine Station, California, USA.
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Details and caveats

Although the statistical approach we describe here is
based on the standard moving block bootstrap, the

coordinated sampling among variables seems to be a
new innovation. A thorough theoretical assessment of

our method and its potential limitations and caveats will
require the attention of the statistics community. In the

meantime, we address two potentially confusing aspects
of our resampling approach.

1) Have we missed important information because our
empirical records are short (7 yr)? The logic behind this

question is as follows. It is unlikely that a short time
series will capture the most extreme residuals possible in

any particular factor, and in the absence of these
extreme residuals, resampling the input data might

never yield absolute maximal output of a given variable.
Thus, due to the limited time series on which they are

based, the extreme values calculated by our method may
be conservative. Our simulation of hydrodynamic forces

on mussels (Fig. 4) provides a hint of this effect. In this
simulation, the distribution of standardized residuals is

unbounded for each variable, making it probable that
the longer the time series, the larger the residuals
encountered. Indeed, predictions from a short (7-yr)

data set underestimate the rarest stresses found in the
long-term series. The magnitude of underestimation is

quite small, however, (,4%) even for an event that
occurs once in 10 000 yr.

Whether our method will similarly underestimate
extremes when applied to real data depends on two

factors. First, it depends on whether or not it is the
extremes of the various factors that govern the extremity

of the biological consequences. As we have seen, this is
not the case for two of the variables contributing to

wave-induced hydrodynamic forces. Waves with heights
above the breaking limit impose no more force than

smaller waves; so as long as our 7-yr series captures the
statistical behavior of waves up to the breaking limit,

larger values from a longer series would be irrelevant.
Similarly, for most situations it is an intermediate wave

period, rather than the extreme, that results in the
highest hydrodynamic stress. Again, as long as our 7-yr
series captures the statistics of these intermediate values,

obtaining a longer series has no advantage. Thus, the
accuracy of our method in predicting return times for

long-term simulated wave and tide data may be due in
large part to the fact that hydrodynamic stress is not

governed solely by the extremes of wave height and
period.

If extreme ecological consequences do depend on the
extremes of each individual factor, the degree to which

our method will underestimate reality depends on the
characteristic of that extreme portion of the distribution

of standardized residuals not included in the empirical
data. In some cases, we know that the tails are physically

bounded: wave heights and wind speeds cannot be lower
than 0 and irradiance is limited by the output of the sun.

In other cases, estimating the shape of this ‘‘missing tail’’

is a task for univariate extreme-value analysis, and we

present a preliminary analysis of our data in Appendix

E. In most cases, the standardized environmental

residuals have distributions with definable upper limits

that are not far in excess of values recorded in our short

time series, suggesting that we have not missed

important information because of the limited length of

our empirical data.

2) Results presented here for limpets and mussels

document the extreme consequences encountered in

1000 and 10 000 random realizations of a particular

year, respectively. How much more extreme might these

values be if we created more realizations? Is it possible to

calculate the absolute extreme that one can obtain by

resampling a finite set of standardized residuals?

In Appendix F, we present a method for extrapolating

to maxima beyond the realizations in hand, yet another

application of univariate extreme-value analysis. How-

ever, for the phenomena we deal with here (hydrody-

namic stress, body temperature), this exercise has little

practical value. For example, in our 1000-year-long

realizations of limpet body temperature, the highest

temperature recorded for any substratum orientation

was 43.18C. If there is a definable absolute maximum

temperature, it must be higher still. But 43.18C by itself

is sufficient to kill all limpets, so any higher temperature

can have negligible biological effect. However, the

situation may be different in other systems. If in a

given system the maximum stress encountered in a

practical number of realizations is not sufficient to have

biological consequences, it may be reasonable to ask

whether stress could ever be sufficiently severe. In a case

such as this, the techniques described in Appendix F

may be useful.

CONCLUSIONS

Our statistical method for resampling a short-term

time series provides a practical mechanism for estimat-

ing the return time of those extreme ecological events

that owe their existence to the chance co-occurrence of

normal factors. Knowledge of these return times

augments our understanding of ecology and evolution.

In the case of mussels, for instance, extreme hydrody-

namic events are unlikely to have much ecological effect:

the variation in disturbance is likely to be much greater

from place to place than from time to time, and this

temporal stability may play an important role in the

evolution of community dynamics and life-history

strategies in the mid-intertidal zone. In the case of

limpets, spatial variation in thermal stress is important,

but temporal variation in thermal disturbance can be

equally important. These findings provide a useful

historical perspective for existing populations, and our

resampling method provides a tool for predicting the

effects of future environmental change. The method

used here for mussels and limpets is applicable to

virtually any system in which extreme ecological
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disturbance can occur through the chance alignment of

‘‘normal’’ events.

ACKNOWLEDGMENTS

We gratefully acknowledge the advice and assistance of Brit
Turnbull and Brad Efron in formulating the basic resampling
procedure. James Rohlf and Larry Hunt provided critical
insight, and Eric Berlow suggested the simulation. We thank
Paul Switzer for productive discussions regarding the limita-
tions of multivariate extreme-value analysis and two anony-
mous reviewers for constructive comments. This study was
funded by NSF Grant OCE-9985946 to M. Denny. This is
Contribution 322 from PISCO, the Partnership for Interdisci-
plinary Studies of the Coastal Ocean, a consortium funded by
the David and Lucile Packard Foundation and the Gordon and
Betty Moore Foundation.

LITERATURE CITED

Allee, W. C., A. E. Emerson, O. Park, T. Park, and K. P.
Schmidt. 1949. Principles of animal ecology. W. B. Saunders,
Philadelphia, Pennsylvania, USA.

Altman, S., and R. B. Whitlatch. 2007. Effects of small-scale
disturbance on invasion success in marine communities.
Journal of Experimental Marine Biology and Ecology 342:
15–29.

Berg, H. 1983. Random walks in biology. Princeton University
Press, Princeton, New Jersey, USA.

Boller, M. L., and E. Carrington. 2006. The hydrodynamic
effect of shape and size change during reconfiguration of a
flexible macroalga. Journal of Experimental Biology 209:
1894–1903.

Breaker, L. C., W. W. Broenkow, and M. W. Denny. 2006.
Reconstructing an 83-year time series of daily sea surface
temperature at Pacific Grove, California. Moss Landing
Marine Laboratory Technical Publication 06–2.

Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage, and
G. B. West. 2004. Toward a metabolic theory of ecology.
Ecology 85:1171–1789.
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Appendix A. Details of the resampling method.

Predicted Annual Cycles. The first step in our resampling scheme is the determination of the “predicted” (= average, mean) signal. In a few cases,
predictions can be made on a mechanistic basis. For example, celestial mechanics and harmonic analysis of past records allow one to make
accurate predictions of tidal fluctuations at a given site (e.g., Darwin 1962). Aside from long-term trends due to changing sea level, deviations from
these predictions are due largely to the unpredictable influence of variations in barometric pressure and the presence or absence of storm surges.
However, for most environmental variables, we do not know the predictable signal a priori and we must estimate it from the time series itself.
Several methods are available, and it is not clear that any one is best. We use the following method here.

Environmental variables such as wave height, air temperature, water temperature, wind speed, and solar irradiance vary in predictable fashion, with
periodicities that depend primarily on earth’s rotation about its axis and its revolution around the sun. Here, we assume that these daily and annual
variations are the major periodicities for ecologically relevant variables, and we use these periodicities as the basis for calculating the mean values
for each measurement time within a typical year. Given a sufficiently long record of measurements, calculating these expected values would be
straightforward: e.g., the predicted Hs at 8:00 am for September 30 is the average of all Hs values measured at 8:00 am on the many September 30s
of the record.

In practice, environmental records are seldom sufficiently long for practical application of the direct approach of simply averaging across years. If
only 4–5 years of measurements are available (as is commonly the case), the calculated mean Hs for a given time on a given year day is subject to
the random fluctuations inherent in small sample size, and as a result, calculated means may vary raggedly (and unrealistically) through time. How
can we increase the sample size available from a short record and thereby increase the reliability of the calculated mean?

First, we note that because of their root dependence on celestial mechanics, the mean pattern of variation in environmental parameters varies
smoothly through time. For example, air temperature might differ drastically between 8:00 and 8:10 am on a particular September 30, but unless
there is some mechanism to ensure that the same abrupt shift happens between 8:00 and 8:10 am every September 30, the mean temperaturesfor
these two times must be similar, and the overall temporal variation in mean air temperature must therefore be smooth. Similarly, the mean air
temperature at 8 am on September 30 should differ only slightly from the mean air temperature at 8 am on October 1. We take advantage of this
“smooth” nature of the system, and include in the average for each time within our typical year not only measurements taken on the same year day
in separate years, but also measurements from nearby times on the same day and nearby days within each year (Fig. A1). In this fashion, a
sufficiently large sample can be obtained to calculate a reliable set of means that vary smoothly through time. Once the sampling scheme is
determined, the predictable signal is easily calculated for each point in the original time series, and residuals from this signal can then be calculated
and manipulated as described in the text. Calculation of the predicted annual cycle of σ (the standard deviation of standardized residuals) proceeds
in the same fashion as for the calculation of the mean annual pattern of each environmental variable.
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Measurement Window. For factors that vary relatively slowly (e.g. sea-surface temperature and significant wave height) values within 6 h of a time
point were included in the within-day window. For other factors (e.g. air temperature, wind speed), values within 1 h of a time point were included
in the within-day window. The appropriate width of the between-day measurement windows is determined through an iterative process. We use ± 2
days as an initial guess for the width of the between-day window. We then use these windows to calculate the expected annual variation in an
environmental factor. The predicted signal is then examined and the between-day window suitably adjusted. If the between-day measurement
window is too narrow, the predicted annual variation is not smooth. If the measurement window exceeds the decorrelation time, the record may be
overly smooth.

Specific sampling schemes were as follows: We used NOAA predictions for the year August 1983–July 1984 (a year midway between maximum
and minimum in the cycle of lunar declination) as the expected values for the tides. (Note: this period coincided with a severe El Niño event, but
this coincidence has no effect on predicted tidal levels or on our calculations.) For a given date in a given year, expected values and expected
standard deviations for wave height and period were calculated using hourly measurements taken within 6 hr of the measurement time (a
within-day measurement window of 13 values), and for values taken at the same times of day within a week of the date (a between-day
measurement window of 15 values). We then averaged these values with analogous values for the same year day in the other six years (7 values).
Thus, the calculation of each mean and standard deviation included 1365 values, providing an appropriately smooth record. For the calculation of
averages and standard deviations in body temperature we used data taken at 10-min intervals within 1 hr of the measurement time on a given date
(13 values), at the same times for dates within 7 days (15 values), and across the 7 yrs, again for a total of 1365 values in each estimate.

As with any sliding window, there are constraints at the beginning and end of the record. For example, if the within-day window comprises 11
contiguous sample points (ti-5, ti-4, …ti, … ti+4, ti+5), the first five and last five points of the record are problematic: values required to fill the
window extend beyond the record. Similar problems apply to the between-day values. We solve this problem by allowing the observed record to
“wrap around,” that is, values preceding the beginning of the observed record are taken in order from the end of the record and vice versa.

Coping With Skew. For the data in this study, correlation of the skew of standardized residuals with the mean cycle was rare, and in the sole case in
which the correlation was substantial (wave period), the pattern of correlation was simple: residuals were negatively skewed in summer and
positively skewed in winter. We solved this problem by separating the overall time series of standardized period residuals into two series: winter
and summer. Within each series, skew is not substantially correlated with the annual cycle, so the winter series can be legitimately resampled and
combined with winter values of the annual cycle and the summer series can be legitimately resampled and combined with summer values of the
annual cycle. More complicated temporal patterns of skew will require more complicated corrections, but we have not explored this problem. Nor
have we explored the use of higher order indices when characterizing the shape of the distribution of standardized residuals.

As a check on the homogeneity of shape for the distribution of standardized residuals, standardized residuals where separated into two sets: those
occurring when (t) < its mean and those occurring when the annual cycle of (t)  its mean. The frequency distributions of these sets were then
plotted and visually compared. For the data used in this study, the two distributions were quite similar (representative examples are shown in Fig.
A2), and we made no further effort to homogenize shape.

Decorrelation Time. Autocorrelation functions for standardized residuals of environmental data generally settled to 0 within 13 days. The ACF for
air temperature deviations settled to a value of approximately 0.1 within 13 days, but maintained this low value for a lag of approximately 120 days
before settling to 0. This behavior is indicative of long-term (approximately 120-day) intra-annual trends within our data, which varied from one
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year to the next. However, if a decorrelation time of 120 days were used in the resampling scheme leading to the calculation of body temperature,
only three segments would be chosen in each year of hypothetical data, allowing little in the way of actual re-arrangement. Consequently, in the
calculations of body temperature, we used a decorrelation time of 13 days for all data, including air temperature. The effect of this less than
maximal decorrelation time was tested by repeating the analysis with block lengths times varying from 7 to 39 days. Tidal deviations required 30
days to settle to 0, and we used this decorrelation time for all data in the analysis of waves and tides and the hydrodynamic forces they impose. The
effect of block length was tested by varying length from 15 to 90 days. Bühlmann and Künsch (1999) note that block lengths on the order of n1/3

(where n is the length of the times series resampled) perform well in many cases. For our environmental times series, n1/3 = 13.7 days, thus our
nominal block lengths of 13 and 30 days seem reasonable.

Segment End Effects. In the resampling scheme used here, no effort has been made to match standardized residuals across the ends of segments.
That is, while residuals vary more or less smoothly within a segment, there may be an abrupt shift as one segment ends and the next segment
begins. For processes (such as wave-induced hydrodynamic force) that depend solely on instantaneous values of the various environmental
variables, such an abrupt shift should cause no problem. In contrast, for processes such as body temperature, in which the current state depends in
part on the history of prior values, an abrupt shift in standardized residuals from one segment to the next might have an unrealistic effect. We
minimize the potential for such adverse effects in this study by requiring that all segments begin and end at midnight. The segment transition is thus
temporally removed from the time of day at which body temperatures reach their maximum, allowing time for any effects of a shift to be damped
out. The timing of the resampling scheme should be re-evaluated if, for instance, minimum body temperature (which typically occurs at night) is the
focus of the analysis.

Independence. In our resampling scheme, no effort is made to ensure that adjacent samples are independent. Because (with the exception noted
above) the width of each sampled segment equals or exceeds the decorrelation time for the process at hand, each segment contains within in it all
the pertinent statistical information regarding the normalized deviations of that process. Thus, even if adjacent or overlapping samples are, by
chance, chosen sequentially from the original time series, no violence is done to the hypothetical time series. The alternative would be to specify
that the beginning point of each newly chosen segment is separated by more than the decorrelation time from the ending point of the previously
chosen segment. This would ensure strict independence of segments, but this scheme seems overly restrictive. For example, it would allow 0
probability of obtaining by chance the original time series of standardized residuals.

LITERATURE CITED
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   FIG A1. The scheme for calculating smooth averages and standard deviations. For time t, data are included
at nearby times within the same day (the within-day window) and comparable times on nearby days (the
between-day window). The value for time t within a given year is then averaged with values for the same
time across years.
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   FIG A2. Representative distribution of standardized residuals. In each case,
the distribution was calculated for times when the mean annual cycle was
above average (closed circles) and below average (open circles).
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Appendix B. Translating the generalized extreme value distribution.

Eq. 14 in the main text is one form of the generalized extreme value (GEV) distribution. Coles (2001) and Katz et al. (2005) use an equivalent
form:

(B.1)

Table B1 gives the equivalencies required to translate between Eq. 14 and Eq. B1. Note that the symbol σ in Eq. B1 has no connection to the use
of this symbol in this study, it is used here solely to ease translation between published forms of the GEV.

LITERATURE CITED
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TABLE B1. The equivalencies required to translate between Eq. 14 in the text and and Eq. B1 used by Coles (2001) and Katz et al. (2005).
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Appendix C. Simulated time series.

In the absence of long-term environmental data for intertidal sites, we desire to create a long-term set of reasonably realistic hypothetical data with
which we can test the accuracy of our resampling approach. Given this long-term data, we choose a 7-yr subset as an example of the type of
short-term data available for the real world. We then apply our resampling method to this 7-yr subset to predict return times, which can then be
compared to the return times actually “observed” in the full data series.

Second order autoregressive moving-average (ARMA) processes provide a convenient mechanism to model the random fluctuations in
standardized environmental residuals. The standardized residual Δxn,i at a particular present time i depends on both chance (in the form of a
random numbers, φ) and previous values of the residual:

(C.1)

Here AR1 and AR2 are autoregressive constants and Δxn,i-1 and Δxn,i-2 are values of the residual one and two times steps before the present,
respectively. MA1 and MA2 are moving-average constants. The random numbers φ are chosen from a standard normal distribution (mean = 0,
standard deviation = 1) and each is multiplied by a constant gain, G. φi is the newly chosen random number, φi-1 is the random number chosen one
time step before the present, and φi-2 is the random number chosen two time steps before the present. For appropriate values of the autoregressive
constants, the ARMA process outlined here is asymptotically stationary; that is, after an initial interval during which the process may have a net
trend, it settles into stationarity (Priestley 1981, Chapter 3).

Appropriate values of AR and MA for significant wave heights, peak wave periods, and tidal elevations were determined through analysis of the
standardized residuals calculated from our empirical 7-yr data series, and are shown in Table C1. For each variable, we created a year’s worth of
hourly data to allow the ARMA processes to become stationary, and then calculated 10,000 years of simulated standardized residuals. These
hypothetical standardized residuals were then combined with the annual cycles of each variable measured as described in the Materials and
Methods to create 10,000-year long time series of hypothetical wave height, wave period, and tidal height data. We then analyzed a random 7-yr
segment of these simulated data in exactly the same fashion as for the real 7-yr time series: we determined the predicted variations (means and
standard deviations) for each factor and from these predicted values we calculated the stochastic standardized residuals. Standardized residuals
were resampled to create 10,000 year-long realizations of the wave environment, and these realizations were played through the model for wave
stress. These 10,000 year-long records of stress provide an estimate of return time as a function of imposed stress (based on 7 yr of data), and this
estimate can then be compared to the actual return times observed in the 10,000 year simulated series (Fig. 7 in the main text).
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Note that we do not intend the ARMA processes used here to model the actual wave and tide data precisely. Instead, we use them solely to
calculate a reasonably realistic, long-term data set with which we can assess the validity of our resampling approach.

LITERATURE CITED
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TABLE C1. Coefficients for the autoregressive moving-average simulation.

 Significant wave height Peak wave period Tidal height

AR1 1.6842 1.6856 0.45705

AR2 -0.6991 -0.7333 0.50762

MA1 0.3028 0.1675 -0.2234

MA2 -0.2260 -0.1903 0.2310

G 0.100 0.155 0.330

[Back to M079-014]
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Appendix D. Disturbance effects on logistic growth.

The logistic equation provides a simple model of population size, in which the growth of the population through time is governed by both its
intrinsic rate of increase r and the carrying capacity of the environment C:

(D.1)

Here Yt is the number of individuals in the population at time t and Yt+1 is population size at time t+1.When population size is small, growth is
exponential, but growth rate decreases as population size approaches carrying capacity. In the example we use here, r = 0.05, C = 10,000.

To model the disturbance resulting from an extreme event, we reduce population size by an intensity factor E. That is, if population size
immediately before the event is Y, size immediately after the event is Y/E. Periodic imposition of disturbance is akin to sustainably harvesting a
stock of fish; after an initial period of equilibration, population size fluctuates about a steady average. It is the more complex effect of randomly-
imposed events that is of interest here.

In our heuristic example, random extreme events (with a given intensity E) have a probability P = 0.97 of not occurring in a given time interval. In
other words, in each interval we pick a random number from a uniform distribution between 0 and 1. If that number is < 0.97, no extreme event is
imposed. If the random number  0.97, the population size is reduced by a factor of E. The system is initialized with 10 individuals and allowed to
run for 500 intervals, allowing the process to “equilibrate.” We then measure the average population size over the next 10,000 intervals. This entire
process is repeated 30 times, and the average and standard deviation of these average population sizes is recorded. For comparison, the same
experiment is repeated, but extreme events are imposed every 33.3 intervals (equal to the return time of random events). We varied intensity factor
from 1 (= no effect) to 6 (only 1/6 of the population survives each extreme event). Higher intensity factors resulted in extinction (population size <
1 individual) at some point in the 10,000 years.

We present the results of this model solely as a heuristic example to demonstrate potential contrasts between random and periodic disturbances.
Different effects can be obtained with different values for r, C, and P.
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Appendix E. Estimating the shape of tails.

The shape of the tail of maximal standardized residuals can be estimated from the data in hand. For example, Fig. E1 shows the cumulative
distribution of the largest 0.2% of standardized residuals for predicted wave periods, a distribution of “points above threshold” that, in theory,
asymptotically approaches a generalized Pareto model (Coles 2001):

(E.1)

Here x is the variable of interest (in this example the standardized wave period residuals), u is the threshold value of x, and K and M are fitted
shape and scale parameters, respectively. If the best-fit estimate of K is > 0, the distribution has an unbounded tail in which exceptionally large
values may hide. If K = 0, the tail is unbounded, but with few exceptional values. If K < 0, the tail has a distinct upper bound. In the case of wave
period standardized residuals, K is significantly less than 0 (-0.313 ± 0.054 [95% CL]), indicating that the tail of the distribution is bounded. A
similar result obtains for the normalized deviation of tidal height residuals (K = -0.255 ± 0.072 [95% CL]). The best-fit estimate of K for significant
wave height is negative, but not significantly different from 0 (K = -0.041 ± 0.045 [95% CL]). In summary, our short-term estimates for the
distribution of standardized tide and wave residuals undoubtedly miss some of the large residuals that would be captured by longer-term records,
but it appears unlikely that exceptionally large residuals are hidden in the unsampled tails of these distributions.

The calculation of limpet body temperature involves additional environmental variables. The tails for the standardized residuals of air temperature
and sea-surface temperature are unbounded (K = 0.027 ± 0.009, 0.329 ± 0.006, respectively). The exceptional values found in the unsampled
portions of these distributions might contribute to higher body temperatures than we have calculated here.

LITERATURE CITED

Coles, S. T. 2001. An introduction to statistical modeling of extreme values. Springer-Verlag. London, UK.

Ecological Archives M079-014-A5 http://esapubs.org/archive/mono/M079/014/appendix-E.htm

1 of 2 7/16/2009 1:31 PM



 
   FIG E1. The upper tail of wave period deviations closely matches a
generalized Pareto function (Eq. E1).
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Appendix F. Estimating absolute maxima.

In our approach to predicting ecological extremes, we resample a time series of environmental factors, and each resampling provides a realization
of how the environment might play out. If the time series from which we resample is finite, there must be at least one particular pattern in which we
can resample the series that leads to the largest imposed stress. How can we calculate the value of this absolute maximum extreme?

It would be impractical simply to try all possible resamplings. If there are n points in the time series of each environmental variable at which we can
start a block and q blocks chosen for each year-long realization, there are nq different ways in which the time series can be resampled. For
example, in our analysis of hydrodynamic stress, n = 2,550 (the number of days in 7 years) and q = 13 (the number of 30-day blocks in a year), so
there are 1.93 × 1044 possible resamplings, a prohibitively large number. Is there a more efficient method of determining absolute maximum
hydrodynamic stress?

One’s first impulse might be to take the largest residuals in tides, wave height, and wave period and add them to the largest predicted values for
these variables. Wouldn’t the stress resulting be the largest possible? There are two reasons why this approach is inappropriate. First, recall that to
maintain any cross-correlation among factors when we resample standardized residuals, segments of all residuals are sampled at the same time
point in the record (Fig. 3 in the main text). Thus, unless the maximum tidal residual occurs at the same time as the maximal residuals of
wave-height and wave-period, these maxima can never act in concert in our resampling scheme. Similarly, unless the highest predicted tide occurs
at the same time as the highest predicted wave height and longest predicted wave period, the extreme residuals in each variable can never be
applied simultaneously to their respective extreme predicted values. Second, the maximum values of each variable do not necessarily combine to
give the maximum output. As noted in the text, hydrodynamic stress is not a monotonic function of wave period: at certain tide heights, stress
decreases as T increases above some intermediate value. As a result, if we combine maximum residuals and maximum predicted values for Hs, T,
and tidal height from our HMS data, we predict an absolute maximum stress that is actually smaller than some measured values.

Direct calculation of absolute maximal body temperature is even more difficult than direct estimation of absolute maximal wave stress. Body
temperature depends not only on the instantaneous values of air temperature, wind speed, solar irradiance, etc., but also on their history. Thus,
even if one could line up the extreme residuals for each variable (keeping in mind that it is the minimum wave height, tide, and wind speed that
lead to the highest temperatures), and in turn line these up with the extreme expected values, the resulting body temperature would not necessarily
be the maximum possible. Only if the conditions preceding these extreme circumstances provided sufficient time for the substratum to heat up
would a maximal body temperature be achieved. In sum, the absolute maximum cannot be calculated by simply toting up the various individual
extremes.

However, absolute maximum stress can be estimated using the statistics of extremes (Gaines and Denny 1993, Denny and Gaines 2000, Coles
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2001, Katz et al. 2005). Our resampling method produces an ensemble of yearlong hypothetical environmental realizations, each of which can be
processed to predict the maximum value of a biological relevant parameter. We can use the distribution of these predicted annual maxima to test
for the existence of an absolute largest annual maximum. In theory, the cumulative distribution of our predicted annual maxima should
asymptotically approach a member of the family of generalized extreme value distributions (GEV) described by Eq. 14 in the main text. This
asymptotic distribution is estimated by fitting the “observed” distribution of annual maxima (i.e., the distribution of stress values calculated using
our resampling technique) to Eq. 14 using a maximum likelihood criterion. If the best estimate of coefficients α and β are both positive, their ratio is
an estimate of the absolute maximal value the distribution can attain. For example, the distribution of annual maximum hydrodynamic stresses for
D = 1 m is best fit with values (±95% confidence limits) of α = 4512 N m-2 (±842) and β = 0.09952 (±0.02811). The ratio of α to β (our best
estimate of the absolute maximum) is 4.53 × 104 N m-2, only slightly above the maximum of 3.88 × 104 N m-2 recorded in the 10,000 years of our
realizations. Given the limited statistical power available from our 1000 year-long realizations of limpet body temperature, the best-fit value of β
(although nearly always positive) cannot be statistically distinguished from 0 for any substratum orientation, so a reliable estimate of absolute
maximum body temperature cannot be calculated from our data.

The ability of univariate extreme-value analysis to estimate absolute maximum hydrodynamic stress or body temperature depends on the ability of
our bootstrap method to provide information about the distribution of these extremes. There are cases in which bootstrap resampling is known to
fail in this task. The classic example is the case in which one attempts to estimate the distribution of maximum values drawn from a uniform
distribution extending from 0 to 1 (Bickell and Freeedman [1981], Efron and Tibshirani [1993, pg 81]). A nonparametric bootstrap does not
provide a good estimate of the shape of the distribution of sample maxima.

The difficulty with the bootstrap procedure in this case arises from the limited size of the empirical sample from which bootstrap estimates are
drawn. If one takes 50 samples from the uniform distribution (as Efron and Tibshirani do in their example), there are likely to be relatively few
samples near the upper end of the distribution. As a consequence, no matter how many times one resamples these 50 measurements, little
information is available about the shape of the distribution of maxima.

However, this example differs from the situation we encounter in our analysis of hydrodynamic forces and body temperatures. Because we have
only 7 years of empirical data, when we choose a bootstrap sample from the time series of standardized residuals we have limited information
available by which to judge the shape of the upper end of its distribution. But it is not the extremes of the standardized residuals that govern the
ecological consequences, rather it is how the residuals combine with their respective mean annual cycles and how the resulting variables interact.
Thus, while we have limited data in the upper end of the distributions of individual maximum standardized residuals, we have a very large number
of combinations of residuals with their annual cycles and of the resulting variables with each other. It is these combinations (rather than the
extremes of individual variables) that determines the distribution of ecological maxima.
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